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The increased complexity of the very large scale integrated cir—
cuits (VLSI) has grestly impacted the field of computer—aided design
(CAD). Ome of the problems brought about is the intercomnmection

problen,

In this research, the goal is twofold. First of all, a more
accurate numerical method to evaluate the intercommect capacitance.,
including the coupling capacitsncs bdetween interconnects and the
fringing field capacitance, was investigated, and the integral method
was employed. Two FORTRAN programs "“CAP2D” and "CAP3D” based on this
method vwere developed. Second, s PASCAL extraction program
emphasizing the extraction of isterconnect parameters was developed.
It 'o-ploys the “cylindrical approximation formula” for the self~
capacitance of s single intercosnect and other simple formulas for
the coupling ocapacitances derived by a "least square method”. The
extractor assumes only Manhattan geometry and NNOS techaology.
Four~dimensional binary search trees are used a3 the basic data

structure.
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INTRODUCTION

The advent of very—large-scale integrated (VLSI) circuits as s
result of rapid progress has greatly impacted on the various aspects
in microelectronics. For example, as feature dimensions approach the
submicron range, the "short-channel effects” dominate the physics of
the devices. This has brought forth more resesarch and studies into
device physics, processing techmologies, material science, otc. On
the other hand, the expomential growth of IC complexity may push to
the eoxtent that the future progress in circuit integratiom will no
longer be limited only by techmology, dbut also, and to a much greater
extent, by our ability to reduce the astromomical design time. This
concern has spawned research and studies ian computer—aided-design
(CAD), computer architecture, design methodology, design automation,
stc. [1-49]., All these efforts are simed at further advancing the
progress in microelectronics that we have enjoyed for the past two
decades. Hopefully, through these studies and with the computational
power VLSI circuits have brought us, we can "bootstrap” ourselves to

the next generation of technologies.

A comprehensive CAD system consisting of wvarious tools has
become indispensable in VLSI circuit design. A part of the CAD sys-
tem is design verification which shows that a given mask geometry

wvill perform the desired digital functions as originally designed.




Extraction, the first step in design verification, transforms the

geometric information on the masks into circuit information. After—
wards a comparison can bo made with the original design, or. a circuit

simulation can be performed to check the responses of the circuit.

One of the problems that the increased complexity has brought
about in CAD is the intercomnection problem, Not only does the rout-
ing among a myriad of devices on the chip become complicated, diffi-
cult and time—consuming, but slso the eslectrical parameters of these
very interconmects have gradually grown into an integral part of the
circuits. The incressed complexity has augmented the lengths of
interconnects on the chip. Moreover, the reduced dimensions of the
interconnects themselves increase the resistances of the lines, and
the fringing capacitances are no longer negligible. Consequently, it
is necessary to include these ianterconmect parameters in the circuit

model, It is on this aspect that this thesis concentrates,

First of all, an equivalent circuit model for the interconnects
on the chip has to be established. A T-type lumped circuit model is
used in this thesis for the interconnects assuming silicon techmol-
ogy. In Appendix A, oriteria for the validity of the lumped circuit
model are derived from transmission line theory. It is shown that the

lumped circuit models are generally applicable under the present

technologies.

In the first part of the thesis, a more accurate account of the

interconnect capacitance by numerical methods is considered. Both

the differential method, e.g., the finite difference method, and the

N
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b integral method (by way of Green’s functions) have been studied.
Y Based on the applications of both methods to solve various problems

in the literature [2-10], combined with the experience in this study,

?! it was found that the integral method seems to offeor more advantages
. in the flexibility of programming and in computation time, There-
;5 fore, it was employed for the numerical computation of two- and i
- three—dimensional interconnect capacitances, Basically the method
) follows the "method of moments” proposed by Harrington [11] and is
ii similar to those in [8-10]. Both testing functions and basis func-
tions are chosen the same as pulse—type functions, which are coa-
:: stants over the subdivisions, and variable—length subsections are
IB divided according to the roots of Chebyshev polynomials, It was
found that this approach offered more accuracy than a comparable
EE number of counstant subdivisions or using delta-type testing func-
" tions, and the positive—definiteness of the resulting kermel matrix
" also guasranteed s solution. Some results will be presented in
;; Chapter 2. .
;: Next, with a view to easily incorporating these capacitances in
. the extraction program for design verification, simple approximation
f{ formulas were sought. An approximation formula for the self-
= capacitance of a single interconnect was first derived, It is based
on the known expression of the capacitance of a cylinder over a
- ground plane. Employing this expression to approximate the fringing
= part of the self-capacitance, we have a reasonable approximation for- 5
Ei mula with an accuracy within 10% of the numerically computed values,

'''''''''''''

- . S ' T e e W N
ROIRROREATA L0 CE RN RSN i /R S5 A S SIS




and it is named “cylindrical approximation formuls”. As to the cou—

-{?. pling capacitances between interconnects, a "“least square fit” method

on the data obtained from the numerical computation was employed to

;;ﬁ: find approximation formulas. A few formulas have been obtained for

ﬁ;} different intercomnect configuratioms, e.g., coupling capacitances

‘\c: between two parallel intercomnects or two pe sndicular cross—over

2?:? lines.

v .

't:: The second part of the thesis is mainly o.J.ncermed with the _i

4V: extraction program, It was intended, if possible, to be part of a -

':ii hierarchical CAD system which supports a number of functions at each

‘E{% level in the design hierarchy with different tools. Hence, the out-

Ly : put form of the extractor is in a SPICE input compatible format such ’ o
i;: that the circuit simulation can be performed without the data conver— _3
EEE sion. The basic data structure in the extractor is 4-d binmary search :
; trees of geometrical rectangles on the masks. The output includes :j

fg:i not oanly the pertineant informatiom of transistors, e.g., channel .

-}E: . width and channel leagth, but also the parameters of intercomnects.

;t; The resistances and the capacitances, both self- and coupling capaci- :E
é;i tances, are reported. l}
o a0
> In summary, Chapter 2 focuses on the numerical computation of -

f?% the interconmnect capacitance, both in two and three dimensions., It

.iii comprises the detailed formulation of the Greem’s functions, the

:;;z sven—odd analysis to find the coupling capacitances in multi- ;;
\ig conductor cases, the integral method and the comparison with the dif-

Sjj ferential method, and a few examples. A user’'s manual for the pro-
cg

v
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grams ""CAP2D”, "CAP3D” which execute the aforementioned numerical

computation is described in Appendix B. Chapter 3 covers the approx-
imation formulas of capacitances. The “"cylindrical approzximation
formula” is derived, and other approximation formulas for the cou-
pling capacitances are also discussed. In Chapter 4, the network
extraction program’s data structuore and the procedure of extracting
transistors and interconnect parameters are detailed; its charac-

teristics, limitations and some examples will also be discussed.

Finally, the conclusions are in Chapter 5.




NUMERICAL COMPUTATION OF INTERCONNECT CAPACITANCE

2.1. Introduction

The present very large scale integration circuits lead to very
large and complex systems with small physical dimensions. Not only
do the devices have small dimensions which requmire special atteantion,
but the intercommnects also become important and have to be reckoned
with in the c¢ircuit simulation. A Dbetter understanding of the
electrical characteristics of the.;nterconnect. especially the capa-

citance, is essential in the design and analysis of today'’s

integrated circuits.
b
As a general rule of thumb, the highest frequency components -
contsined in the signals in most present large scale integrated cir— -
cuits correspond to wavelengths well exceeding the physical dimen— ”
sions of the circuit elements. Hence, lumped circuit models can be
used for the electrical analysis of the circuits., G. Bilardi et -
sl, [12] evaluated various circuit models for intercomects im VLSI =
circuits and it was concluded that both curreat and the projected
silicon technologies in the near future fall within the realm of the
capacitance model. That is to say that a dispersive 1line can be 55
replaced by a capacitance proportiomal to its lemgth. From another

point of view, the lumped circuit model can be considered as a




first~order approximation of the transmission line model as discussed

in Appendix A,

Another important aspect in the eleotrical analysis of the
integrated circuit is the “gemeral impedance level”. It is defined
in [13] as the lossless characteristic impedance of the average con-
nection in the system. Since most digital integrated circuits are
based on MOSFET devices which are typically of higher impedance than
the general impedance level, voltage and charge become the "state”
variables in the analysis. Consequently, capacitance emerges as the
dominant circuit element. The deciding factor of the performance of
most digital circuits is the time delay through the system, and

interconnect capacitance certainly plays an important role.

A cross—sectional view of a typical integrated circuit is shown
in Fig. 2.1. Since the channel-stopping ion implantatiomn is usually
situated beneath the field oxide where the intercommect is generally
placed, it can be considered as the ground plane as shown in the com—
putation model in Fig. 2.2. In general cases, there can be three
differeat dielectric media, and intercomnects can reside inside the
oxide layer or the passivation layer as shown im Fig. 2.2. The top~
most layer 1is assumed to be always the free space. In order to
reduce the computational effort, we can also consider the intercon—-
nect capscitance in a two layer or a homogeneous medium if the layers
in question are thick emough. The following discussion of the numeri-
cal computational method of the intercommect capacitance is based on

this model as shown in Fig. 2.2.
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E 2.2 &Eeriga} Computatjon Methods of Interconmect Capacitances
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froh

A The computation of capacitances has appeared inm the past for

various applications, e.g., the calculatiorn of the characteristic
impedance of microstrip transmission lines is one prime example [42-
45]. Though the emphasis and the assumptions ere different in dif-
ferent applications, the methods are still applicable in the computa-
tion of intercomnnect capacitance. In summary, the available computa—-
tion methods of ianterconnect capacitance can be categorized into

three types, namely: analytic, differential and integral methods.

The analytic method, in effect, can calculate the capacitance in
closed form and no numerical analysis or discretizntion.is required.
This will be the subject of the next chapter so its discussion will
be deferred. In this chapter we will concentrate on the numerical

methods, i.e., the differential and integral methods.

Let us first oconsider the differenmtial method. The finite
difference method for solving boundary value problems is the prime
example of a differential method., It starts with Poisson’s differen-
tial equation, defines the bdoundary of the problem in question, and
then sets up the boundary conditions. After solving all the poten—
tials on the grid points within the boundaries, we can calculate the
charges on the surfsce of the interconnect and then the capacitances
accordingly. For example, the method employed in [2,3] can be
categorized as the differential method. It is generally easy and
straightforward to formulate, Multiple layers of media or irregular

boundaries can be accommodated without too much increase in
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= computation, However, if the region im consideration is anm open
,: .:: boundary as shown in Fig. 2.2, a suitable boundary condition has to
: ” b.o defined. In [2] a "reflective”— or Neumann—~type boundary condi-
:‘?‘, : tion at a reasonable distance from the source was defined to simulate
3 the opea boundary. In [3] an ad hoc arrangement on the boundary
':'\ ‘\j grids was set up in the numerical process to take care of the open
v
:‘: " boundary., Though there are other ways to reasonably simulate the
-:5' ) open boundary, they may compromise the accuracy of the computation or
' i increase the computation time. This is one disadvantage of the dif-
::3 ferential method. Other disadvantages may be attributed to the
:‘ i rather large system of linear algebraic equations of grid potentials
n and the difficulty of extemding it to three-dimensiomal cases.
:E . Depending on the grid and the regularity of the boundaries and the
;S \.1 source regions, this matrix may not lend itself to some special tech-
'.‘ q niques in numerical linear algebra. Iterative methods like Gauss—
:': Seidel may be too time—comsuming and slowly coavergent. In three-
::'. \j dimensional cases, the number of discretized grids may be too large
' to handle ia the finite differemce method.
oo
,: On the other hand, the integral method starts with the Green's
‘ 2 fuaction of the Poisson’s equation, and the integral equation of the
. convolution of the Green’'s function with the charge deasity fumction
ﬁ: is solved. Thea the c.apacitlncu are calculated after the charge
f.; ﬁ' densities on the interconnect have been found. In [4] the Green's
:..‘_,-'. . fuaction for two—dimensional interconnects in two layers of media was
Eé: derived, and it will be shown ia & latter section. In [6] the
. I
v
WY oA TAL R P O T A R N N e A e
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three—~dimensional Green’s function was formulated for the computation

of irregular conductors over dielectrics.

In comparing these two methods, the differential method can be
thought of as solving the problem "microscopically”, and the integral
method as "macroscopically”. Because the system of linear algebraic
equations generated in the (finite difference scheme relates only
local neighboring points in the grid, the resulting matrix temds to
be large but sparse. The effects of the boundaries and the sources
on the grid potentials are reflected only after the system of equa-
tions is solved by, for example, the Gauss—Seidel method. While, on
the other hand, the effects of the Dboundaries are already
"integrated” in the Green'’s function in the integral method; thus,
the region in question only concerns the source region, and the
resulting kernel matrix is small but full in this case, There are
other differences between these two methods, and they are summarized

in Table 2.1.

One of the important characteristics of these two methods is
that the capacitance computed by the integral method will be a lower
bound tq the true value and that by the differential method will be
an upper bound. This is parallel to the computation of the charac—
teristic impedance of s waveguide discussed in [41], where the varia-
tional properties of the two approaches were also discussed. As in
(41], it would be ideal to compute the capacitamce twice, once by
each method and take the average. However, there may be too much

computation involved this way. Besides, the accuracy of the results
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TABLE 2.1 Comparison of the Differential and Integral Methods.

Integral Method

Basic equation

Poisson's differen—
tial equation

Green's function and
its c¢oanvolution in-

of the even—odd mode
excitation, substan-
tial increase iz com—
putation; hard to au-
tomate in programming

tegral
”State” vuriahl;‘gi Potentials Charge densities
Discretized region Large region enclos— gn1y the surface of
ing the source and the source region
the media arouad it . ,
‘Nultiple layers of [Easy to accommodate Infinite summatiom in
media without too much in- Green's function
crease in computation causes a substantial
increase ia computa-
- . tion
Multiple conductors Cannot take advantage asy to ke advan-

age of Eio even—odd
mode excitation, and
easy to automate the
input of the dimen—
sions and positions
of the conductors

Automatic mesh geon—
eration

Harder to implemext
ia a program

Easy to implement

Three—~dimensional
csse

Much more complicated
than two-dimensional

Not too wmuch
complicated

more

counterpart
Solution method Solution of a large Moment method
linear algebraic
equation, i.e.,
Gauss—Seidel

Boundaries shape

Can take care of more
irregular boundaries
provided the grid is
refined enough

Rigid, regular boun-
daries, at most slant

side walls and plane
interfaces

Open boundaries

Some approximation or
other mechanisa has
to be devised

No problem with open
boundaries

Characteristiocs of
[ 1 ]

Upper bound on the
A 4

¢ State variable means the uaknown in the basic
solved by either the differential or iantegral method.

Lower bound on the
true value

equation first was

s¢ See Ref. [41) by Collin for a complete discussion.
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can be increased by refining the grid in either method. In comparing
the pros and cons between these two methods, the integral method
scems to be the better choice, especially in the case of homogeneous
medium and multiple conductors. It is easy to program for multiple
n%; conductors with diverse geometries and positions; the discretized
. region only concerns the conductor surfaces, which reduces the number g

of linear algebraic equations. MNore important, we can take advantage

;:i of the LU factorization of the kernel matrix in solving charge demsi- N
~ ties for the multiple conductor case., However, two major disadvan- ni
N tages qg the integral method are in the cases of multiple layers of -
E; media and irregular shapes of the interconnects and the bouandaries.
= If sccurate numerical computation is imperative for those cases, the %%
N finite element method, ome of the differential methods, may be the .
?Q; only viable solution. >
g
- 2.3. Formulation of Multi-Conductor Capscitance Computatiom
"~
o In this section, a general formulation for computing the self-
.’s ' and the coupling capacitances among multiple conductors is described.
,; Either the differential or the integral method has to be associated E
.‘ in this frame of formulation to compute the capscitances. First the
s; goneral case of N conductors is derived, thea two axn-plgs of N=3
.
& and N = 4 are shown. Special coasideration is required for the case ;;
N =4, B
NN =
N
‘s

<
L]

2y
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2.3.1. Gemeral formulation for N conductors

Consider a system of N conductors over a ground plame as shown
in PFig. 2.3 where N =3 is depict?d. " All the capacitances, both
self- and coupling, are shown. The algebraic relationship between
the charges Qi’ i=1,2,++¢,N and the potentials 01, i=1,2,...,N on the

conductors can be expressed as [14]
Q = Cy30, + Cy3(9;-0;) + covecees + C10(02-0,)

Q, = C;,(9,-9,) + C,,0,

+

cesensces + cZn(o’-on) (2 1)

Qﬂ - Cu(’n.’g) + cnz(on”’) + ecee *+ cnn’n

Note that the potentials P#’'s are referenced with respect to the
ground plane, and the capacitsnces are symmetric, i,e., Cij - cji'

for 1  i,j ¢ N, because of reciprocity.

An analysis named "oven-odd mode analysis” is employed to solve
the capacitances cij" in Bq. (2.1). Differemt potential patterns
are first assigned on the conductors, even mode or odd modes, then
the corresponding charges can be expressed algebraically in terms of
the capscitances as will be shown in the N =3 and N = 4 examples.
Solving for the charges numerically in the respective modes by either
the differential or the integral method, then we can find easily all

the capacitances.
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Figure 2.3 Multi-Conductor system. (N = 3 in this case).

o RN DA AT P .‘\.'~-' S
08 ORI A S P T S N



. . ”
etetelele

.l{.“

PR RS g I.l'.’
N »

--t~ xx e N
+ P s
R + YW AN )

R
A s

s
Nt g

'." \

s

X
»

.
B
.
B
.
B
.
‘Ql
.
-
. .
.

R

17

(i) Even mode : In the even mode the potentials are assigned as
0, =p, =eco= P =1, From Eq. (2.1) the solf-c;pacitances can be
written as C,, = Q&". i=1,2,...,N. The superscript on the charges
indicates that those charges are evaluated under the even—mode poten—
tial pattern., All the self-capacitances are determined by this

even—mode excitation,

Since there are N(N-1)/2 coupling capacitances left to be
determined, it is necessary to generate the same number of indepen—
dent algebraic equations from the odd-mode potential patterns. It is
& matter of choice to assign these odd-mode potential patterms. A
systematic procedure is used here. Except for the case N = 4, the
ptocodnfo employed here p;pdnces a system of N(N-1)/2 linear indepen—
dent slgebraic equations which can be programmed easily and then

solved uaiquely for the coupling capacitances.

(ii) 0dd mode 1 : the potentials are assigned as 9, =9, =1,

and all the other potentials equal -1, Solving Eq. (2.1), we have

b S
Qf™) =y, + 2(Cy, 4, 40 tC )

Qi‘) = Cy3 + 2(Cyy#Cy +e e ¥Cy )

The sum of the above two equations is chosen to be onme of the N(N-
1)/2 independent equations. Since C,, and C,, have been found in the

even—mode snalysis, the sum of the two equations can be esxpressed as
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::'t: C;, + Cl‘ + LI ] + c + c’, + C" + L) + C
. 1n 2a

= 0.5(a{* + q{*" - a{®) - af*)) (2.2)

The superscript 1 on the charges here indicates the first odd-mode

excitation.

Other odd-mode patterns can be obtained as in (ii) by assigning
two of the N potentials 1 volt, and all the other potentials -1 volt.
Since there are totally C(N,2) = N(N-1)/2 combinations of this type,
s total of N(N-1)/2 linear slgebraic equations as Eq. (2.2) can be
generated. It can be shown that the determinants of these systems of
algebraic equations are nomzero for N = 3 to 10 except N = 4, So the

linear independence is achieved and a unique solution is guaranteed.

2.3.2. Exsmple for N=3 =

First Eq. (2.1) is rowritten in the following form for N = 3,

Q, = Cy;0; + Cy,(0:-03) + Cy5(0,-9;) (2.32)
Q = C;53(0;-9;) + C330; + Ca3(95-9,) (2.3b)
Q = Cy3(0,-0:) + Ca3(030) + Cyyfy (2.3¢) -

The even— and odd-mode excitations are listed as follows :

I D L IR P
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(i) Even mode : let §, = 9, = P, = 1 then we have
€y = Qie) 3 Cyy = of®) ¢, = af®

(ii) Odd mode 1 : let §, = 9, = 1, and O; = -1, then we have
Cyy + Cyy = 0.5(al™) + @{®) - @{®) - af®))

(iii) Odd mode 2 : let P, = 9, = 1, and P, = -1, then we have
C,s + Cyy = 0.5¢a") + @l - af® - afe)

(iv) 0dd mode 3 : let §, = p, = 1, and P; = -1, then we have

C,a + Cyy = 0.5(0f7) + af*) - af®) - qf®))

It can be easily shown that the determinant of the system of the
sbove three linesr algebraic equations from (ii),(iii) and (iv) is 2.

Hence, the coupling capacitances C,,, C,, and C,, are solved in terms

of the corresponding charges as

c,, = 0.25(al*)-a{* +af*)-af{ ") +a{*) +a{*) -2q{*)) (2.4a)

C,s = 0.25(f")-a{*) +a{ ") -a{*) +a{*) +a{*) -20{*)) (
2.4b)

e T T
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Cyy = 0.25(@8 V- " +a{* -a{ "+l +al P -2q(*?) (2.4¢)

Note that the subscript i on the charge ng) indicates the number of
the conductor the charge 1is on, while the superscript j shows the
number of the odd-mode excitation this charge is extracted from.
Since there are other ways to define the odd-mode potential patterms,
the coupling capacitance formula in Eq. (2.4) is not unigue. For
example, the capacitance formula in [5] is “the result of another way
to specify the odd-mode excitstioma and not the same as that in

Eq. (2.4) .

2.3.3. Special consideration for N = 4

The procedure described in Sec. 2.3.1 would result in a system
of 1linearly dependent equations for the case N = 4, Another way to
specify the even—odd mode excitation has to be devised here. The
even-mode excitation can still be the same, while some other odd-mode
excitations have to be defined. Instead of summing the corresponding
equations resulting from the odd-mode excitations as mentioned above,
they can be treated as separate equations. The resulting system of
linear algebraic equations can be shown to be independent, So the
even—-odd mode analysis for the N = 4 case can be summarized as fol-

lows :

even mode : f, = P, =p, = p, = 1

............................
.............................

W

s Ak

- -
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> €y = Qi" Ciy = Q£°)

DL

noT Cys = QS°) Ciu = Qf°’

=

N

t odd mode 1 : P, =9, =1, f, =9, = -1

O (1)

O Q; 7 = Cyy + 2(Cyy+Cyy) (2.5)
:3‘

.\ _‘_\.' .

N o oAM= €y, + 2(04,4¢,0) (2.6)
%5

S

:jf

OO oddmode 2 : O, =P, =1, P, =p, = -1

|

::} - 3

S Qi ) - Ciz + 2(Cy,+Cy,) (2.7
~

" E; (3)

N Q 7 = Cyy + 2(Cyy+Cy,) (2.8)
I

“]

oddmode 3 : 9, =p, =1, 0, =9, = -

L 3

i af’) = ¢,, + 2(C,,+Cy,) (2.9)
- : (*) .

2 af® = c,, + 2(c, 4, .) (2.10)

Equations (2.5) to (2.10) coastitute a system of six algebraic equa—

- tions with determinant 4. Thus, the six coupling capacitances are

. - st A, @ ST T T LT
BRY AR AAIARA T SRR AN P I
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uniquely determined. Note that if the general procedure in
Sec. 2.3.1 is employed, then the next odd-mode pattern will be
P, =0, =1, p, =9, = -1, This is the exact complement to odd-mode
3 listed above. Consequently, the summing of the corresponding equa-
tions will result in an identical left-hand side from both excits—
tions and a dependent system of equations. For cases other than
N = 4, it is not possible to find pairs of “complementary excita-

tions”; hence, the equations are indeﬁondent.

2.4. Integral Method

In this section, a detailed discussion of the integral method is
given, The method of moments [11] is formulated, =long with the
incorporation of the "even—odd mode analysis” discussed in Sec. 2.3.
The two— and three— dimensional Green’'s functions in multiple layers
of medisa will be derived in the next two sections, and the detailed
expressions used to compute the kernel matrix will be givem in

Appendices C and D.

2-4.1. Formulation of moment method

Assume that the Green'’s fumction to the Poisson’s equation is
expressed as G(;.;'). In the derivation of this Green’s function,
the boundary conditions have already been taken into account, Ia
analogy to system analysis, the Green’'s function can be considered as
the impulse respomnse, and the potential 1in Poisson’s equation can

then be expressed as 2 convolution integral :
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'&'f.

] 0(r) = [ a(x)6(z.7") a5’ (2.12)

N

I,:: : In Eq. (2.11) O is the potential and o is the charge density omn the

X ﬂ source surface whose area is designated as S. Note that the dummy

variable in the iantegral T’ indicates the coordinats of the source

” \ region, aad r is the observation point. Since potentials on the

-, -, source region are decided by the even—odd mode excitation as dis-
P -‘.1

':2 t cussed in the previous sectiom, and the Green’'s function is also

‘N

A

- .‘j known, the only unknown variable in Eq. (2.11) is the charge density

e -

. function o(r’), Therefore, it is an integral equation, and the

" :'.-Z method of moments can be employed to solve it.
{ ' ! First, assume that the unkcuwn charge density function c(;')

::} . can be expressed in terms of a set of basis fuactionms ., i=1,2,°°**,N

(‘_ Ay

A as

”,

" - c - n

. -

N o) = ) e ") (2.12)

':.- i=1

S

SO -

Thus, the unknown functiom o(r’) is tranformed into N unknown con-

o ? stant coeffecients a,. Substituting Eq. (2.12) into Eq. (2.11), we

« - have

-\. LSy

D «d n |

- it -'

. o) lg =Y [guEar) ar (2.13)

No i=1

.:: 1
Y 3 )
':a %; Note that the observation point is chosen at the source surface S a
‘_ N over which the convolution integral is integrating, becaise in even- a
'J‘: .': Y
j,': Y odd mode excitation, the potentials are specified over S, .
Cd k|
qd !
5 7

-
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Next, another set of testing functions tj‘ Jj=1,2,...,N is
defined. If the testing functions are chosen exactly the same as the
basis functions, the method is named Galerkin’'s method [11]. Defining
an ianer product (f,g)> = Isf(;);(;)d; for any two real fumctions f
and g, wve then take the inner products on both sides of Eq. (2.13)

with sll the testing functions tj' and have

n
ISO(r)lstj(:)dr = 2 “iIsdrIsdt' ui(r')G(t.r')tj(r)
iml
j=1,2,"*",N (2.14)

Let us further simplify Eq.(2.14) by defining

b. = | o(3)! t.()ar
J Is sj

and Aij = ;sdtjsdr'ui(r')(i(taf')tj(r). i.j = 1,2,...,N

Since bj and Aij are scalars which can be calculated from the known
fusctions O(r)lg, t,(r), wy(r'), amd G(r,r'), Eq. (2.14) is

essentially a system of simultaneous linear algebraic equations. It
can be written in the matrix form Ax = b, The vector x is the un-
known coefficients a, to be solved. Note that the size of the "ker-
nel” matrix A depends on the number of basis functiouns. Usually it
is considerably smaller than that generated in the finite difference
scheme, 30 a direct method like LU decomposition or Gaussian elimina-

tion can be employed. It should also be pointed out that tae

Cset
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| n ~ "kernel” matrix is usually full and those obtained by Galerkin's
'fé . mothod should be symmetric.

PO

x One of the main tasks in the above procedure is the ochoice ot

m

R the basis functions. As mentioned in [11], they should be linearly
-;; .- independoent, and the superposition of them as in Eq. (2.12) should

approximate the unknown function d(;) as closely as possible. Some

::: 5: additional factors have to be comsidered in the choice of both test-
22; .: ing fuactions and basis functions : (1) the accuracy of the solution;
OO

‘. (2) the ease of evaluation of the "kernel” matrix’s elemesnts, Aij‘
:E? - and (3) the size of the matrix A and its behavior, whether it is
;é - woell-conditioned or not.
gi 'E For numerical computation of capacitances using the capacitance
:E model in Sec. 2.1, the basis functions and the testing functions are
;E . chosen the same as “pulse” functions which are constant over the i
; :; subareas on the conductors. In other words, the surfaces of all the
‘Eé :J conductors are divided into subareas and the charge densities over
:EE éﬁ these subareas are assumed to be constant, Then the above procedurs
Ei =~ is adopted to solve for the unknown coefficients. The reasons for
;3 -~ using pulse functions are as follows : (1) they are linearly indepen-
Eé o dent of each other; (2) the charge density function can be reason-
!! ably well expressed in terms of them, provided that the subdivisions
f;g : are refined enough; (3) a closed-form expression can bde derived for
_f; ﬂ the double integral in the evaluation of the kernmel matrix elements;
;: - (4) if the basis functions and the testing functions are *he same,
§§ EE the kernel matrix is not only symmetric but also positive defianite,
)
'3
2
Y A VA L S A AT e e L S A N S e ~ )
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and this guarantees a well-behaved kernel matrix. In order to more
closely approximate the charge density function with the choice of
pulse—type basis functions, variable width pulses are also used. It
improves the accuracy compared with that of constant puises with the
same number of subdivisions. In practice, those varisble-width
subareas are chosen according to the roots of Chebyshev polynomi-
als [16], because the charges tend to comgregate at the edges of the
conductors, and Chebyshev polynomials have smsller widths between
roots at both ends of the interval ([-1,1]. Additionally, an explana-
tion [10] based on expressing the kermel matrix resulting from
Galerkin’s method as a quadratic form of enmergy proves that it is s

positive definite matrix.

%.4.2. Integral method and even-odd mode anslvsis

In this section, we show the imcorporation of the integral
method with the even—odd mode analysis in the case of a multi-
conductor. Let us continue with the three—comductor example given in

Sec. 2.3.2, Assume that the number of subareas on these three con-

ductors are n,, n,, n,, so that the total number of subareas

N = a,+n,+n,, then Eq. (2.12) can be rewritten as

1 nitn, N
a(r‘) = 2 Giui(r') + 2 ai“i(r') + 2 ¢iui(t')
i=1 i.ﬂ‘*l i.u,_ﬂ""l

Since Galerkin’s method is employed, the testing fumctions are the
same¢ as the basis functions, tj(;) = wj(;). j=1,2,°**,N, and

Eq. (2.14) beconmes

PFYY

(2
=
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-§ 1
I ()l w,(7)dr = a. ) dr| dr'w.(r')G{r.r")e.(r)
s, s, J 121 ijs; Ist i 3

natnj;
+ 2 GJ de's dg'ui(r')G(;,;')uj(;)
i=n_ +1 1 3

+ a,f d;fs d;'«i(;')c(§.2')»j(;)
i=n,+n,+1 : 3

j = 1.2.oco.nt

. .
' 8 2 b4 .

i,

e

P} B
ata ala aa

ni
I p(r)| . (Pdr = a.) dr| dr'e,(z')6(r,r")w. (7)
S, S, J igl ijs’ st i j

7

ni+ns
+ 2 uiIS d;f d;'ui(;')G(;.;')uj(;)
i=n, +1 3 S,

N
* 2 Gif d;I d;'ﬂi(;')G(;.;')uj(;)
i=n,+n,+1 3 S

j = n""l,ooo,n““n’

ny
I o(r)l e (ndr= ) af azf ar'e(z16(r, 76 (D)
8, ssj 121 ij-si J.s:. i j:
nitn,

M 2 “1f d;j dr'e,(r')6(r,r")e, (1)
. s, s, j
.n,+1
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+ g a,f d;_[s dF' 0y (3 )6(F, 7" )a(3)
i=n +n,+1 3 3

J = n,4n,+41,...,N

jf .where S,, S, and S, are respectively the areas of the three—comductor
: surfaces. Note that for Jdifferent potentisl patterns, omly the
~
\ potentials at the conductors are different, i.e., only 0(;)Is )
b §
L4 - -
.- Q(I)ls’. and b(r)ls in the above expressions are changed. This
A |
o corresponds to only changes in the right-hand side vector b ot the .-
e |
matrix equation Ax = b, As an example, for the even and odd modes
- specified in Sec. 2.3.2, the b vectors are o
:
‘ J s;‘* .
X .
. b= JS,“n,+1 for the even mode, -
N .
J [} [} ”
3 Bytagtl
- -
-
s sand for the three odd modes,
2
: ‘s Is,e s
'J . L] [
Y [ - . ha L!
%: b = lsa.nx*l by = :fsawnz*l b = Iszun1+1 i
:" : - . . J
- '-1
4 :fsat:n:.*ﬂz"'l ! S,?ﬂ,ﬁ'n,*-l ! sn‘?“zﬂlz*l ;
- - . . . .
< 3
D oo
s o
e On the other hand, the kernel matrix A only concerns the Green's DN
A ~
3 -
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'1 function and the basis functions, and it stays the same for different

even—-odd mode excitations. This is one of the important advantages
o of the integral method. Becsuse the evaluatioa of the kermel matrix
F? elements Aij always is the most computationally intensive, we have to
| compute it only once, snd LU factorize it only once, them use back-

< ward substitution to find the charge densities corresponding to b,,

b,, and b; as listed above. If the differential method is used, we

have to essentially solve four boundary-value problems, and caanot

take advantage of the even—odd mode excitations as above. From this

point of view, the integral method is better in the case of multiple
ig conductors,
iz 2.5. Derivstiog of Two-Dimensional Green’s Functionm
Two—-dimensional Green’s functions to Poisson’s equation in a
2 homogeneous medium or im two layers of media have been derived in
E: (4,14], and they are given here for reference; on the other hand, we
.‘ will conceantrate omn the derivation of the three—layer case in this
i: section.
. 2.5.1. Homogeneous medium
{E Consider 2 uait line charge at (x’',y’) in a homogeneous medium
- “ with dielectric constant s, and the ground plane is at y = 0, Then
I;; Zi the Green’s function is
W
T
e R T e N e AT RN
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-1 (x-x')"“\(Y‘Y')z
G(x,ylz’,y’) = 1a n < (2.15)
2ne (x=x') +(y+y’)

Note that the logarithmic function in the above expression character—-
izes a8 two~dimensional 1line source, and the complementary terms of
y-y’ and y+y’ reflect the comsequence of the source and the image

across the ground plane.

2.5.2. TIwo lavers of medijs

Let there be two layers of media over the ground plane as shown
in-Fig. 2.4. The first layer has a thickness h over the ground plane ti
and s dielectric comstant &,, The second layer on top of the first
one has a dielectric constant s,. There are four subfunctions asso-
ciasted with the Green’s function depending on the relative positions
of source point (x’,y’) and observation poiat (x,y) namely:
G,y (x,ylz',y'), Ga,(x,ylz’,y'). Gaslxz,ylx’,y') and Gy, (x,ylx’,y’').
The first digit of the subscript specifies the region where the
observation point resides, and the second digit indicates the posi-
tion of the source point. This convention will also be used for o
other subfunctions of other Green’s functions discussed later., These
fcur subfunctions have been derived by the method of multiple reflec— -

tions across the ground plane and the interfsce between the two media

[4]. They are listed as :
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S Figure 2.4 Derivation of two—dimensional Green's function
o in two layers of media.
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v d i3 =
UK 1 3 eamer (z-x’) +(y+y’+2kh) _
Gii(x,ylx’,y’) = 2 (=——)* 1n n -
.}'.:\ 4"‘; k=0 [ 3+3 1 (X"X' ) +( y"y' +2k.h) .
=
) 1 © 8i-e€1 K+l (x—x')z+(7+Y"2(k+1)h)’ B
* 2 ( ) 1a 3 3
A 4ne, k=0 S3%ea (z-x') +(y=-y'~2(k+1)h)
.;:;‘:;: 0{y<hand 0 y' <h (2.16a)
’ - 3 , )
1 83=81 L (x-x’) +(y+y’'+2kh) .
Gya(x,ylz’,y’) = 2 (————)" 1ln = < ot
4ne, k=0 %1+t (x~x') +(y~y’'-2kh)
g - Y A 3
s 1 €384 k+1 (x~x') "'(y"'y +2(k-1)h) o
R - 2 ( ) ln " ~ ‘.
e 4“.; k=0 ‘3"'.1 (x-") +(y—y'-2(k-1)h)
RN
:::‘_-: 0<h{yand 0<h y (2.16b) :
~-'(._;, -
-
o - s .
e 1 8178y (x=-x') +(yry’+2kh)
‘: G;z(x.ylx. :y’) = 2 ) 1n 2 2
o 2"(‘3"’81) x=0 geate, (x-x') +( ly‘y’ |+2kh)
127,- 0<ysh(y (2.16¢)
;ifﬁ G, (z,ylx',¥') = Gy,(x,ylx’,y') except
0<y (hgy (2.16d) -
-
Y &
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Compared with the formula in Egq. (2.15), the above formulas basically
are still logarithmic—-type functions with some modification due to
the two media. The infinite summation in the formula is a direct
result of the infinite reflections of images between the two infinite

parallel planes,

2.5.3, Three layers of media

The method of multiple reflections employed in [4] to derive the
Green's function for two layers of media is too complicated to formu-
late the three—layer case. Hence, another method of boundary match-

ing in the spectral domain [19] is employed instead.

As shown in Fig. 2.5, the dielectric constants of the three
layers of media are e&,, g,, and ¢,. The outermost layer is assumed
to be free space always, and the intercomnect will not reside in this
region. Thus, there are four subfunctioms, G,,, G,,, and G,y;, G,;,
to be considered. The convention on the subscript of those subfunc-
tions is the same as that discussed in the previous section, Let us
consider the case when source point (x’,y’) is in the layer e,, and

derive the subfunctions G,,(x,ylx’,y’) and G,,(x,ylx',y'). The other

two subfunctions can be derived similarly,

As depicted in Fig. 2.5, an artificial interface is drawn past
the source point (x’',y’) in layer e,, which incresses the number of
regions to four. In analogy to Fourier analysis, assume that the

potentials in these four regions are :
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0,(z,y) = r cos(k(x~x')) (a,(k)sinh(ky)]dk (2.17a)

P,(x,y) = j. cos(k(x-x’)) [a,(k)sinh(ky) + By(k)cosh(ky)]dk (2.17b)
[}

0,(x,y) = j: cos(k(z~x'))(a,(k)sinh(ky) + B,(k)cosh(ky)]dk (2.17¢)

0,(z.y) = I. cos(k(z-2")) [a,(k)e ¥¥)dk (2.174)

Note that the a.(k)’'s and B,;(k)’'s in Eq. (2.17) may be considered as
the unknown spectral compoments of the correspoading potentials,
Because of the ground plame in region 1, potential 9,(x,y) should be
zero at y = 0 and does not contain a cosh(ky) term. For the outer-

most region 4, e-ky represents & decaying wave in the open boundary.

At the interfaces between different regions, the potemtials and
the corresponding "displacement vectors” D's have to be continuous.

Hence, the boundary conditions can be written as follows :

’;Iy-. = D,ly.‘ (2.18.)
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I\I
oz'y.yo = o;ly.yo (2.18¢c)
20 | 2, | 8(y-y') (2.18d)
s » ~ 8, ' = ry o
Yag T ay 77
olly-b = o"y’b (2.18e)
30, | 0. ' (2.186)
e = g, .18f
3 ay y=b ay y=b

" 2P _-;f".r r_.- ‘_",]‘v'.:ii'__'.';..— LI A A \.v‘._- P

A
*a 'y

-ir"

3
Note that these six boundary conditions uniquely determine the six
unknown spectral componeats, ai(k)'s and Bi(k)'s in Bq. (2.17). .
f“
After some tedious algebraic manipulation, the spectral components )
can be solved : iy
2 1 -ky’ -2k (b-y') <R
a,(k) = e 7 (1-%,e 7 (2.19a) N
n(s,+s,) xD(k) e ::.J
Y
! 1 -2k (b-y*) -'?’
a,(x) = o 7 (1-%,cosh(2ka))(1-%,e 77
ns, xD(k) (2.19b) ﬁ-_*_
-0
1 1 _kyo "2k(b“Y' )
By(k) = e (%,sinh(2ka)) (1%, )
ne, kD(k) (2.19¢) :..-'
. j‘
o
N AN e e e L o e L L e L
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a,(k) = (sinh(ky’')+,sinh(k(2a~y'))) (1+&,¢  2kD)
ne,  kD(k) (2.194d)
1 1 -2kb
By(k) = (sinh(ky’)+§,sinh(k(2a~y'))) (1~-Z,0 )
ne,  kD(k) (2.19%)
2
a,(k) = (sinh(ky’)+%,sinh(k(2a~y’))) (2.191)
n(s,+s,) kD(k)
%t ¥ 8e—8C3
where §, = and §, = ——
S +e, Sete,

and D(k) =1 - g;‘-zk‘ - ng-ZXb + g;{ze-Zk(b-.)

Substituting Eq. (2.19) back iato Eq. (2.17), we can obtain the
potentials in spectral integral form amalogous to Fourier integrals.
Since the source in the above derivation is in the layer &,, the
potentials 0, and §,, both in layer e, as s result of the artificial
interface introduced in the derivation, can be combined to form the

subfunctiona G,,. @, is naturally the snbfunction G,,.

Written in spectral integral form, P,, as an example, can be

expressed as

1 cos(k(x-x')) - -
0, (x,y) = (1-2,672k(b=7"))
2ns, °° kD(k)
44444 :_ Y ._:’. ‘.\".-_'. RS :\- .;.' - _“..'\'_ ;_\.. : : : ~,,"-. - "(4\ - ;. L.\:.: _." _-‘ ot
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" (o X(¥'=7) _~k(y'+y) +2, 0 KT’ +r2l)-¢x°—k(y’-y+2.) )dk
3 by 2y2a (2.20)
3
o
N .
Z:-:. In order to "reverse Fourier transform” Eq. (2.20), or integrate out
the dummy variable k, first the factor [D(k)]™ is expanded im bino- :
o mial form as :
\: -2 - k k 2kb 2
_.::\ [D(k)] = 2 E E (-1) (i)(:) g‘j a+t Ezn e n e kl(j-n-k)
= j=0 n=0 k=0
R -
-.',:‘: Then substituting this binomial expansion into Eq. (2.20) and utiliz- ;;,
N ing the following definite integral from [17] :
—— cos(bx) dx = (1/2)1la ———— Ref>0, Rey>0 T
{ ! 32 3 4 :
) ¢ x by
o ;
‘J-.
’--
we can integrate out the spectral variable k and express 0,(x,y) in -~
o the space domain as :
o _
< ® j n
0.(z.y) = 2 PR G R R
4%8; jm0 n=0 k=0
b [ (x-2')*+(y+y* +2ba+2a(j=k-)) " |
o0 a .:__
2 (z-2') *+(~y+y’ +2bn+2a( j-k-n)) > "
;:: o
3 :
@
oY .
-:\:
\-
"I
X
@
Lo

o
»
.
.




SR (x-x') *+(-y+y’ +2bn+2a(j~k-n+1)) "
_::;:, DI + 8, 1a T

(z-2') *+(y+y’' +2bn+2a(j-k-n-1)) >

(z-x') *+(—y=y' +2b(n+1) +2a(j-k-n) ) >

"... - + §3 in s Py .
o (z-x') +(y=y’'+2b(n+1)+2a(j-k-n))

i ©

(x-x') *+(y=y’ +2b(n+1) +2a (j~k-n-1)) >

+ {,_g, ln 3 2 ]
L (z=x') +(~y-y’+2b(n+1) +2a(j-k~n+1))
\
w:\ .:.
NI
Ll
=X 0<¢alygy b (2.21)
v -

{ =

.:\‘..

\ . Because the constraint on P,(x,y) is a { y' { y<b, and O, has a
:::;: i similar formula as that in Eq. (2.21), the combination of P, and 0,
{ B results in substituting absolute values for y-y’' ia the above
. Eq. (2.21). The other subfunctions can be obtained in a similar
';;:l:,' - manner. In summary, we have the two-dimensional Green’s fuactiom in

' . | three layers of media as follows :
D
bl
':":: N @ 3§ a
. v 1 kKjy By, j=n+ky n
> _ G, u(z,ylz’,y’) = Y Y Y nEd®e i,
RN 482 im0 nm0 k=0
SN
e . 3 3
;ﬁ; 5 [ (z-x') +(ly+y’ | +2bn+2a(j=k~n))

1n

S (z-2') *+(1y-3' | +2ba+2a (j=k-n))*
ey e
) '\'.o -3
g
Voo
N (x-x') " +(=ly+y’ | +2bn+2a(j-k-n+1)) >
" P‘ + g!. in 2 3
2% (x=2')"+(-ly-y' | +2bn+2a( j-k-n+1))
X

h) »!

o
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AN (x.x')’+(—ly+y'|+2b(n+1)+2:(j-k-n))’ _-

{

ADE (x-x') >+(=ly=y* | +2b(a+1) +2a( j=k-n)) >
N (z-x') *+(ly+y’ | +2b(a+1) +2a(j=k-n~-1)) > -
) - + 833; 1n 3 2 -
T (z=x') " +(ly-y’ | +2b(n+1) +2a( j-k-n-1))
i:ir 0 {y,y £achb (2.22a)
G,,(x,ylx’,y') = G,,(x,ylz’.y’) except (2.229)
-
0Ly Sagygh -
1 ¢ 112 g
‘ Gyalz,ylx’,y') = 2 3 Y nEd®e ik,
418, =0 n=0 k=0
3 3 bt
. [ (z=2') +(ly+y’ | +2bn+2a( j~k-n)) -
N in -
,Jﬁ . (x-X')‘+(|y-y'|+2bn+2:(j-k-n))z
Voo
D
v (x-x*)*+(ly=y’ | +2ba+2a(j-k-a+1))* =
:-'_ + ¢; 1a -

(z=x') *+(|y+y’ | +2bn+2a(j-k-n-1)) >

» 8 _a_o_'a_ "t
. LN I |

, v
I AR A
NN

2 (x-x') > +(~ly+y’ [+2b(a+1) +2a(j~k-n)) " N

R *3 1a : : ~
N (x=x') +(-|y=y’ | +2b(n+1) +2a(j~k=-n))

N -

L -

i 5
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- . (z=x') *+(=ly=y’ | +2b(2+1) +2a( j-k-n-1)) >

E. e * 818 1n 3 2 ]
(x=x') +(=|y+y’ [+2b(n+1) +2a( j-k~-n+1))

0<Caly,yy <V (2.22¢)

=
= \ « § =
Gialx,ylzt,y) = DD I R Rt A
5 2n(83+83) jug nw0 k=0
::'.‘: ::: 2 ’ 3.
DR [ (z-x') +(ly+y’ [+2bo+2a(j~k-n))
RS 1a
WS (8-8')a+(|y-y'|+2bn+2:(j-k-n))’
j
< (x-x') *+(~ly+y’ | +2b(a+1) +2a( j—k-n)) *
_~:: he + gz ln 3 3
2 ‘ (x-x') " +(=ly-y' | +2b(n+1) +2a( j=k-n))
»': 0y agy KD (2.224)
P Note that these expressions still retain the basic logarithmic ’
o 9
iﬂ - function as that in Eq. (2.15). With the pulse basis function, the :
;: Zi double integral in the evaluation of the kernel elements will result
se N

in a closed form. The doetsiled expressions of these closed-form

;: :f evaluations are included im Appendix C, Furthermore, the complex

’E e triple summation in the above tormulas can be interpreted as the mul- ,
.~ N 1
“ tiple reflections among the three parallel planes, i,e., the ground 1
:S plane 2nd two dielectric interfaces. The program which executes the
i - aforementioned procedure of the integral method is named “CAP2D” and
‘ ;: a user’s manual for it is imcluded in Appendix B, i
'
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2.6. Derivation of Three—~Dimensional Green’s Furction

There are some circumstances in which the two—dimensional
snalysis cannot satisfactorily compute the intercomnnect capacitances.
For example, the cross—over of two perpendicular interconmects on
different 1levels 1is one such example. Hence, the three—dimensional
Green’s functions in homogeneous, two—layer and three-layer media are ~

examined in this sectionm.

2.6.1. Homogeneous medium ;é
i
Consider a unit point charge at T = (x',y’,z') in a homogene~

ous medium with dielectric constant ¢ and the grouand plane at z = 0,

The Green’s function to the Poisson’s equation satisfying this boun- ;g

dary condition has been derived [6] and is wzitten as :

6(r,') = (1 +z=2) 1 Y2 - [ple(zra) 1TV (2.23)

4ne

wheze p’ = (x-x')‘+(y-y')’

L I AN
. e ehe b

A

Note that r = (x,y,2z) and ' = (x',y',2') are the observation aad
the source point, respectively. The core of the expression is a T
function proportional to the reciprocal of the distance which is dif- e

ferent from the logarithmic function in the two~dimensional case.
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« JC 2.6.2. Two lavers of medis

The basic principle used in the derivation of the three-

dimensional Green’s function in multiple layers of media is similar

3

g ‘; to boundary matching in the spectral domain as discussed in Sec. 2.5
A ;\. o
:z{: for the two-dimensional case. The formulation had been introduced inm
e ~3

..'.- -

A [6]. For two layers of medis, lot the dielectric constant of the
',\; - lower 1layer be &, and the thickness be h. Assume that the ground
SOS TR

qu plane is at z = 0, and the dielectric constant of the top layer is
RS

.\1 '!.‘

> i; g,. Utilizing the same coanveantion as the two-dimensional Green'’s
iii . function, the three—dimensional Green’s function for two layers of
ij; = media is
. JC

-5&-:.: .

Y ) [ ]

.’-_‘: -.'\ - - 1 1 3 3 -1/2

2o G ,(r,2') = - 2 g‘[[p +(z+z'+2ah) "]

Yo 4ns,r 4ney a0

- A
RN - 3o +(zma +2(a+ )W) 172 - glp (a2 —2(ar1) 1) P17/ 2
o ‘f

P ] . 3 -

R + E1p"+(z+z' ~2(a+1)1) 17V 2]

" ‘ 0<1z,2” ¢(h (2.24a)

- - 1 1 < -
Gys(r,z’) = - Y e[-&lp +(a+2 +2(a-1)m) ") 7Y/2
4ne,r 4ne; pug
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+ [p’+(z+z'+2nh)’]'1/2]

0<h ¢ z,2 (2.24b)

-~ 1 2e < _
Gy3(z,r’) = ( 2 ) 2 gn[[P’+(z—z'-2nh):] 1/2
4ns, este,

n=Q

- [p‘+(z+z'+2nh)z]-1I2]

0<z<h( a2 (2.24¢)

- - 1 2e - B _
Gy4(z,2’) = ( ) 2 gn[[p’+(z-z'+2nh)z] 1/2
' 4ne, et

a=0

- [p‘+(z+z'+2nh):]‘1/2]

0<¢z" <h¢z (2.244)

whers p = (x—x')'*(Y‘Y'): , o = p +(z-2')" and I = L

8,+31

2-8.3. Three lavers of media

Consider the configuratiom in Fig. 2.6. The thicknesses of the
layers are a and b~a and the dielectric constants are €0, 83, and ¢g,.

These parameters are the same as those in the two—-dimensional case,
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Utilizing one well-known Fourier integral [15,6]:

£t - j° T, (xp) oKz’ | o (2.25)
[ ]

where r’ = p’ + (z-z'f:. and J,(x) is the Bessel’s function of first

kind order 0, we can derive the Green’s fuactioan.

First, consider the caio in which the source point resides in
layer &, and the subfumctions G;, and G;, are derived. As before,

the potentials in layors s,, e,, e&;, are represented as Fourier

integrals:
9, = [ 8T,k e X5 ax
4ne, °
0<a<z bz (2.26a)
- - 1 ® 8o - —t
0, = 6,,(5.1) = —— [ (T ke EE 2
4ne, "° 3
+-j.e,(k)J.(kp)e'k“"')dk
[ ]
+ j:e,(x)J.(xp)ek““ Yax]
0<Ca<cz, 2" Db (2.26b)

- - 1 @ '
9, = G, (r,z') = T4(k)To(kp) e ¥(Z72" ) ax
Py 13 -:;::_{J. 1 °

----------
. " o.

......

o o e i gl e AT A TS R
e T T T T R A T TV T T TN AT

s




Do e A o flied Y . W W W
i el - i ‘r_-.’U“_‘V.."‘.;r.»""i_'.r-"~' o Ve T A Al Al N

47

) + I:mn:..(kp)e““""dk]
0<z aandagz b (2.26¢)
o where p' = (z-x')* + (y-y')z

The tuanctions Q(k), ©,(x), 0,(k), ts(k), and ©3(k) are the unknown

spectral components to be determined by boundary matching. As in the
- ; ; -k(z-z') ; .
two—dimensional case, the exponential term e in @, dictates a

decaying wave towards the open boundary in layer g,; also, the abso-

late value on z-2z' is removed because z is always greater tham z' in
this region. Note that the first term in @, accounts for the singu-
larity of the source point in the same region. Because the relative
u: magnitudes of 2z and 2z’ are not fixed in this region, the absolute
.. value is needed in the exponent. ]

|
3

As in the two-dimensional case, the continuity of the potentials a

and the displacement vectors dictates the following necessary boun-

dary conditions :

zmg = 0 (2.27a)
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L 3
i§ \
‘:.l ozlz.b = 00|z,=b (2.274) 3
- 4
4
4
4
30, 300 - [
. e P e B (2.27e) C
A z 9z N
\‘_: <
Substituting Eq. (2.26) into Eq. (2.27), we can solve the five unk- ,J
- nown spectral componmeats im Eq. (2.26). After some algebraic manipu-— ‘
4
~' lation, they are listed as follows : eﬂ
- .
:-:‘, o _ - -
8,(k) = - ——a"1(g,-e72K2) (,-e2K(P72")) (2.28a) ‘
3 .
o 8o _, _ - - -
o 8i(x) = -3, ——A Lpgm2k(a=2') 1z 72Ky , (7 _o72Ka)) (2.28b) :
e 4
N
O
I ‘ ™ "
= y 280 -1,-2ka(, _ 2k(b-z'), (2.28 R
'.':: 1(x) = 8,+s, A e tame +28¢) ..
I.\j
Y
-t
28  _y -2ka  2kb_, 2kz’ "
X T,(k) = A~le™2ka(g2kb_; ,2kz’) (2.284)
8.+,
\. A
%'!
@] where A = £z, - g,0"2K8 - g o2k(b-2a) , 2K(b-e)
-:.'j:.' €28 So-¢ ;
ma g, - TS L S8
\-.J 8;%e, sote, :




j'f-:.jl"'- 49

. : *.

_Sﬁ = Note that the function Q(k) is not associated with the Green’s func-—-

:1}5 . tion in question, so it is not listed above. Utilizing the binomial

Zj:f - expansion of a71 and the following definite integrals [17]

] -~

<Is -ax 3 3.-1/3

S e " Jo(fx)dx = (a + B ) . Re(a+if) > 0

A °

". - 3 2. -1/3 3 b Y-

o j° e~ %cosh(Bx) T, (yx) = 0.5([y +(B-a) 17> + [ +(g-a)*17¥/%),

Sl [ ]

I

NV Rea > IRegl, vy > 0

s -

EACIE

P 7 |
we can transform the Fourier integrals in Eq. (2.26) back into the
space domain in order to obtain the two subfunctions of the three-

.1 dimensional Green’'s function in three layers of media as follows :

-- 1 1 ¢ J & . .
" G a(F.7) = - Y Y Y ntRG) (Bye,me, i
= dne,r 4783 j=Q nm0 k=0
[1p*+(2( (j-E)b+(2k-0) a) +2427) ") 71/2
N - &, (p +(2((j~k)b+(2k-a-1) a) +z+2*) *]"1/2
U = 8, ([p" +(2( (j=k+1)b+(2k-n)a)=z+2")) ]171/2
'-. i 2 . N 3 -1/2
- + [p +(2((j=k+1)b+(2k-n)a)+z~2')) ]
- :; - [p +(2((j-k+1)b+(2k-n)a)-z~2"))*171/2)
+ 3,8, (0p +(2((j=k+1)b+(2k-a-1) a)-z+2*)) * 173/ 2
.
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+ [,:.'+(2((j-l:+1)trf-(2k—n—1)a)+z-z'))“]-1/2
= [p"+(2((j=k+1) b+(2k-2+1) a) -2-2")) " 171/ 2} ]

0¢a< zband 0<ag 2z (D (2.292)

@« j n
- - 1 -t § §om
G,,(r,r’') = —m 2 2 2 (-1)® k‘i)(;)&;nﬁzj k.
2n(e,+s,) j=0 n=0 k=0

[[[P’+(2((j-k)b+(2k—n)a)+|z-z'|))’]‘1/2
- [p +(2((j=K)b+(2k-n) a) +|z+2’ |)) *171/2)

= C,[[pz+(2((j-k+1)b+(2k-n).)-|z+zn|))’]"1/2
+ 1 H2( (kD) b+ 2En) a)-[2-2* 1)) '17H 2]

0{z{aCband 0 <Caz' D (2.29b)

The other two subfunctions of the Green’s function can be similarly

formulated and they are

-- 1 1 o i 8 . ._
Gy, (7,7') = - Y Y3 nkd)®ete,dTE
Ameir  4mes jug ge0 k=0

[1p*+(2(=Ci-0) 2" +(j=n+m)b(n=2K) a) 42427 )) ') 71/ 2
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----------
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+ 8.8, 0p +(2(=(j=k) 2’ +( j—a+k+1) b+(n~2k-1) a) +z+2*)) '] 71/ 2

S = 8,([p +(2(=(j=k) 2’ +(j—n+k)b+(n-2k+1) a) +z-2’)) " 171/ 2
- o - = [ H(2(=(j=k) 2’ +( j-n+k) b+(n-2k+1) a) =22’ )) 11/ 2
-.Q

b

+ [p +(2(~(j-k) z' +( j—n+k) b+(n-2k+1) a)-z+z')) *] "1/ 2}

L = &, ([p +(2(=(j=K) 2’ +(j=a+k+1) b+(n=2K) a) +2-2*)) "] 71/ 2
L

n = [0 +(2(=(j=K) 2’ +( j-n+k+1) b+(n-2K) 8) ~22")) "] "1/ 2
." -
o + 19 +(2(=(j=K) 2’ +(j=n+k+1) b+(a-2k)a) ~z+2')) *173/ 2} ]

- 0{z{a<band 0 {z' {ac<lbd (2.29¢)
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It should be pointed out that the "core” function in the above

;: exprossions is still the inverse square root function mentioned ear-

Eﬁ :i lier. Associated with the pulse basis functioms in Appeandix D, the

ST - inverse square root function results in closed-form integratiom for

gi :5 the evaluation of the kernel matrix elements. A detailed derivation

~

i: o of these kernel integrals is included in Appendix D. The program
.-

,;? which implements the numerical computation of the three—~dimensional

,§§ ;E interconnect capacitances described above is named "CAP3D”, and the
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user’'s manual for it is the same as the one for "CAP2D”, and is

included in Appendix B with some examples.

2.1. Some Results of ITwo— and Three-Dimensionasl Numerical Computa-

2.7.1. Comparison of two— and three—dimensional capscitance

In two-dimensional capacitance computation, the length of the
interconnect is assumed to be infinite; in other words, the calcu-
lated capacitance is the capacitance per unit length of the intercon-
sect. In comparison with the three—dimensional capacitance, as shown
in Fig. 2.7, the capacitances are plotted versus the "normalized”
length. Since the two—~dimensional capacitances and the parallel-
plate capacitance are proportional to the length, they are linear
lines in Fig. 2.7. As expected, the discrepancies between the
corresponding three—dimensional and two—dimemsional capacitanmces are
diminishing as the length increases. Some of the difference may be
attributed to the "end effect” or the fringing—field capacitances at
the ends 6! the interconnect which are included in the three-
dimensional computation, Also, the difference between two-
dimensional capacitance and the parallel-plate capacitance is due to
the fringing—-field ocapacitance at both sides of the intercomnect

which had been taken into account in the two-dimensiomal computation.

Two csses of thickness are also considered in Fig. 2.7. In the

case of t/h = 0, the intercomnect is considered infinitesimally thin,
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and, naturally, the fringing—field capacitances from the side walls
are reduced and all the corresponding capacitances are smaller com-—
pared with those of thickmess t/h = 0.8. From this comparisom, it
can be concluded that as the dimensions of interconnmects are reduced,
the fringing—field capacitance does not decrease in the same propor-
tion as the parallel-plate field capacitance., Thus, the fringing
capacitance gradually emerges as the dominating component in the
RN ' evaluation of the capacitances. Hence, more accurate computation is
needed to evaluate them in order to take all the capacitance com—

ponents into account.

2.7.2. Coupling capacitance and slant side walls

lfb Showa in Fig. 2.8 are the cross—sections of two iatercomnects.

The self- and coupling capacitances with respect to the separation

- “s” and the pitch angle of the side walls "a” are given in Table 2.2. 7?
S;E First of all, it can be deduced from the table that the coupling
z&s capacitance is ianversely proportional to the separation, and the
A j self-capacitance decreases as the coupling capacitance increases.
;i; This effect may be attributed to the fact that the fringing fields on
;é;; the side wall are directed more towards the adjacent interconnect ;
2;i instead of the ground plane as the separation decreases. Conse~ B
gﬁi quently, some fringing~field capacitance in the self-capacitance S
sjg shifts to the coupling capacitance., However, as compared with the
ol -

NG differences in capacitances shown in Table 2.2, thke coupling capaci-
o~

tance increases more than the reduction in the self-capacitance. :?
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TABLE 2.2 Self- and Coupling Capacitance vs Pitch Angle and Separationm.

* pitch angle (a)

s/h 60° 70° 75° 80° 90°
22.332 22.667  22.839  23.018  23.407 =
1.0 6.729 . 7.984 8.801 9.811 13.236
(4.266) (4.626) (4.813) (5.006) (5.426) .
23.469 23 .844 24,036 24,234 24,660 -
2.0 4,145 4.830 5.236 5.706 6.964 i
(3.129) (3.449) (3.616) (3.79) (4.173)
25.111 25.613 25.870 26.136 26.710
5.0 1.666 1.922 2.060 2.209 2.555 y
(1.487) (1.68) (1.782) (1.888) (2.123) A
25.968 26.573 26.885 27.208 27.911
10.0 0.659 0.759 0.812 0.866 0.987
(0.63) (0.72) (0.767) (0.816) (0.922)
e " S .
® The capacitances are in units of 8.854:10-1‘ Farad/cm,
and the dielectric constant of the homogeneous medium is 4.0,
¢¢ The decrease in the self-capacitance as a result of the
‘ adjacency of another interconnect. The reference capacitance
o is the self-capacitance of a single interconnect,
I
-.:'_\'
e Next the pitch angle seems to have a greater effect when the
"l. -
ﬁ?? separation is small., For example, at s/h = 1, the coupling capaci-
: tance with a 90° pitch angle more than doubles that with a 60° pitch
angle; whereas at s/h = 10, the difference in coupling capacitances :
is about 50%. This is due to the fact that the closer the two inter-—
connects, the more strongly coupled they are, and the more evideant is :§
......................... R T T T e R P A S
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the change in pitch angle. Since the design rules of the separations
between adjacent interconnects are usually dictated by the considera-
tion for metal migration, it may not be necessary to consider the
pitch angle effect. However, this ability to take into account the
pitch of the side walls of interconnects is helpful if detailed
information is needed. Subsequently, in all further capacitance com—

putation of intercomnects, a 90° pitch angle will be assumed.

2.7.3. Comparison of knock-knee and cross-over configurations

In the channel routing problem, there is some concern about
whether the knock-knee or the cross—over configuration will have
smaller coupling capacitance, In Fig. 2.9 and Fig. 2.10, both the
knock-knee and the cross—over configurations of two interconnects in
different levels are shown. For the sake of simple computation, the
thickness of interconnects is assumed to be infinitesimally thin. As

discussed previously, if the thickness is included, the coupling

capacitance will be increased due to the increased side w:f& areas,
The cslculated capacitances for these two cases are listed in ?
Table 2.3 to Table 2.6. For simplicity, both interconnects are
assumed to have the same width aand 1length, The parameter "1” is
defined comparably in both knock-knee and cross—over cases as shown
in Fig. 2.9 and Fig. 2.10. C,, is the self-capacitance of the lower
interconnect, and C,, is that of the upper one. More important, the
coupling capacitance between the two intercommects is C,,, Comparing

Table 2.3 with Table 2.4, or Table 2.5 with Table 2.6, it is apparent

that either the kmock-knee or the cross—over configuration has very
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T

> Figure 2.9 Knock-knee configuration.

‘D
N

e et Iy
/r/.»fl'
.".".ﬂ-‘ s

.
PIS
)

. .- - [N i I e RSP A = ..._. .‘_'.' . -
R LAY . . L. “ e T L) -~ St -~ N .
. A L DR . A R S T !

\'\'-1--\ A.-‘-;\_.-n &'(““‘L_‘p.s ARSI WL, S b PRI, S, a A-\_LAL\\A\;L&\.\ SR SAGE SE ES -




vy
AR
Za

Chiudh S thdr )

b enn it anfl i dulbtel A Sl Mafl Bt

59

.....
.. .
.........
..........
....................

NE

it 7 77

/)

Figure 2.10 Cross—over configuration.

>
~

.o

o

@:
-': B
e

T D N

-
A

-

AT e
>

P WP Y

AV VLN AL I PR R

PRI

,o

faah e asalie



.....
.................
.........

.........
--------------------------------------

60

[§
4\ TABLE 2.3 Knock-Knee Capacitance.

f:;j (wy/hy = wy/hy = 1, hy/hy = 2)

i/n, 2.0 3.0 5.0 10.0  20.0

S C,, 6.65 9.03 14,20 27.87 56.00

C,, 5.59 7.32 11.08 21.22 42.47

C,s 2.06 2.68 3.42  4.13  4.52

E——————— L —

Wl

.

s ' e ettt
e P

P SRS
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TABLE 2.4 Cross—Over Capacitance.

"
l‘l

l.l .l LY
Ay

(Wy/hy = wy/hy = 1, hy/hy = 2)

1/a, 2.0 3.0 5.0 10.0 20.0

C,a 6.92 9.44 14,72 28.73 57.40

s 33 5.78 7.60 11.44 21.87 43.56

i - SN
L N
o

.
.

C,a 2.29 3.15 4,19 5.29 5,95
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TABLE 2.5 Knock-Knee Capacitance.

(';/hx = '3/h1 = 1. l/hx = 10.0)

]

h,/hy-1 0.5 1.0 2.0 5.0 10.0
C,, 27.59 27.87 28.38 29.41 30.14
C,, 22.98 21.22 19.38 18.49 18.20
C,a 5.66 4.13 2.88 1.41 0.59

TABLE 2.6 Cross—-Over Capacitance,

(w,/hy = w,/hy =1, 1/h; = 10,0)

b,/h,-1 0.5 1.0 2.0 5.0 10.0
C,. 28.22 28.61 29.40 30.75 31.61
C,. ‘ 23.56 21.78 20.41 19.48 19,27
C,, 6.71 5.26 3.70 1.74  0.69

—————

similar values of coupling capacitance between the two interconnects
in different levels. Therefore, it does not matter whether the chan-
nel routing problem is solved by the knock~knee or the cross-over

configuration from the viewpoint of the capacitance penalty.
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In summary, the two— and three—dimensional capacitance computa-
tions can be applied to various interconnect configurations. As the
dimensions of the intercomnects and the proximity between them become
smaller, not only the self-capacitances need more accurate computa-
tion, but also the coupling capacitances become more important. In
this chapter, the numerical computation of the interconnect capaci-
tances was discussed. Fortran programs "CAP2D” and "“CAP3D” were also
developed to implement the integral method discussed here. In order
to easily incorporate these capacitances into an extraction program,

some simpler closed-form formulas are needed instead. These will be

discussed in the next chapter.
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APPROXIMATION FORMULAS FOR INTERCONNECT CAPACITANCES

3.1. Introduction

As the complexity of the present VLSI circuits increases, the
interconnect parameters have become more important in both circuit
design and circuit verification., In Chapter 2, numerical approaches
to the computation of intercomnect capacitances were discussed. How—
ever, those computations are usually quite involved and require a
large amount of computation time. 1In egtraction programs for design
verification, it is impractical to go through those computations for
every intercomnect in the layout, Simple tormulas, though not as
accurate as the numerical . mputation, have to be derived and
employed in the extraction programs. From another point of view,
simple or approximate formulas can also provide some physical insight
or "guidelines” for the designers. Hence, designers can take the
electrical parameters of the intercomnects into accouat in the design
process and reduce the number of design iterations. In gemeral,

these approximation formulas can serve as unseful tools in both design

and design verification.
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m 3.2. Self-Capacitance

In this sectiomn, the aﬁptoximation formulas for the self-
capscitance are discussed. The self-capacitance, by definition, is
the capacitance of the intercomnect with respect to the ground planme.
It should be pointed out that the presence of other intercomnects in
the vicinity will reduce this capacitance with respect to the ground

plane as discussed ia Sec. 2.7, and shown in Table 2.2.

3.2.1. A reviev of simple formulas for self-capacitance L

)
The simple analytic formulas for the two—dimensional self- S
capacitance have been discussed in the literature [20-23]. For the
sake of comparision and discussion, a gemeral review of those simple
formulas is first given.
3.2.1.1. Parallel-plate formula
The parallel plate formula is s fundamental expression for the
computation of capacitance., It can be written as
C = gw/h (3.1)
where ¢ is the dielectric constant, w is the width and h is the dis-
tance from the ground plane to the plate. Note that the formula 1n -
Eq. (3.1) is two—dimensional, and the capacitance calculated by it is
in units of Farads per—unit—~length. Generally speaking, this formula
.’ is applicable under the assumption that the thickmess of the plate is -

negligibly small and the width w is considerably larger compared with

the distance h, It csn be comsidered as a first-order approximation
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formula and it was used successfully for the calculation of intercon-
nect and gate capacitance before the dimensions became so small that

fringing capacitance was no longer mnegligible.

3.2.1.2. Thin-plate formuls

It is known that the charges on & conductor surface will congre—
gate at places where there is a sharp curvature change, e.g., edges
and points, Hence, the electric fields at the edges are not constant
as in the middle of the plate as assumed in the parallel-plate for-
mula. Thus, it gives rise to the "edge effect” or fringing-field
capacitance of the plate. In [20] a genmeral formula was derived from
the conformal mapping method to include the edge effect of infini-
tesimally thin-plates. An approximate formula assuming that ;idth w

is larger than the distance h can be expressed as

v 2h nw
C=ge| 1 4% =——(1+ lom=)], w)) h (3.2)
h nw h

The seocond term in the expression can be considered to account fer
the fringing-field capacitance. As w is increased larger thanm h,
this term becomes negligible and the thin-plate formula Eq. (3.2), as

expected, reduces to the parallel-plate formula of Eq. (3.1).

3.2.1.3. Chang's formula

Advancing one step forward, Chang’s formula {21] furthermore

takes into account the edge effect and the finite thickness of the
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plate. Utilizing the Schwartz-Christoffel transformation of the con—

formal mapping method and an ingeniously contrived transformation
function, Chang was able to derive an analytic formula for two-

dimensional self capacitance. It can be summarized in the following:

C= e(2/n)ln(28blk‘), w/h 21 (3.3)

-1/3

1aR = -1 - (nw/2h) - (p+1)p ! tash™*(p”*/?) - 1n ((p-1)/4p) -

(M -1 ({*)-1) (R p) 17/ *+(p+1) tamh™ L (R{ ) p) / (R ) -1) 17/

1./3

~2p*/*tanh ™ [(R{*)~p) /p (R -1) 12 *+(mwamp*, 5> win 3y

Rba
Réx) otherwise

R{’) = n + (p+1)/2%1nA

-3 —1/3

n =0/ (nw/2B) + (p+1)/2[1 + 1n(4/(p-1))] = 2p*/*tann™?p

A = max(n,p)

p =28 -1+ [(28°-1)*-11*/?

B=1+t/h

The parameters w,h,e are as defined in Eq. (3.1), amd "t” is the
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thickness of the plate. It should be pointed out that this formula,
though complicated, is rather accurate. In comparison with the two-
dimensional aumerical computstion [4], its percentage errors gre all
within +2% [21] for differemt combinations of w/h and t/h. Still
this formula is considered too complicated to be employed in the

extraction programs,

3.2.1.4. Elmasry’'s formula

In line with the idea to provide an easy, simple formula in the
preliminary design phase and in the CAD programs, another simple for-

mala [22] was proposed. It can be expressed as

L h t t w/2
C=g——[ 1 + 2=—1n(1+ —) + 2—la(1+ )] (3.4)
h h 4 h+t

Note that the parameters are defined as befors. Physically the
second and the third terms in the above expression correspond to the
capacitances resulting from the charges on the side walls aand the top
wall of the plate, respectively. Since this is an empirical formula,
the factor 2 in front of the second and the third terms can be
adjusted empirically according to the experimental data or the data
from numerical computation for a better correlation with the "true”

capacitance value,

All in all, the above formulas can be applied in the calculation

of the self-capacitance in a homogeneous medium, Chang’s formula is
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sccurate enough but still too complicated to be incorporated in the
extraction programs. Elmasry’'s formula is not sufficiently accurate,
thus, another approximate formula, the “cylindrical approximation

formula®, is proposed.

3.2.2. Cylindrical approximation formula }

3.2.2.1. Formulation

As a prelimipary, let us consider the capacitance of am inter—

| PR

connect whose cross—section is a square with side t and a distance h
over the ground plane. It is known that the capacitance is deter—
mined by the geometric shape, the perimeter and the distance from the
ground plane., Hence, the capacitance per unit length of the sguare, T;
C', will be a function of t and h. Since the capacitance per uanit
length of a conductor over a ground plane with a circular cross-

section is given by the relatively simple expression [15] =

c 2ne (
- 3.5)
c d+(d’-l’)‘/’
1n( )

where “a” is the radius of the circle, and "d” is distance from its o
center to the ground plame, then intuitively, we might employ

Eq. (3.5) as an estimation for the capacitance Cs with a proper :;
choice of oparameters. Next we examine a few possible choices for

these parameters.
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Consider the inscribed circle to the square; that is, a = t/2,
and d =a + h, Because like charges repel on the conductor, they
will keep as far apart as .possible. Congeqnently. smooth surfaces

B like the circle will have less charge accumulated near the ground

f plane than the square which has sharp corners for the congregation of

charges. Also, the "inscribed” circle has s perimeter nt compared to

s perimeter of 4t for the square. Due to this shape factor plus the

smaller perimeter of the circle, it is expected that the "inscribed

circle approximation” will always underestimate the capacitance per

= unit length of the square configuration.
< Next let us comsider the comductor with a rectangular cross-
li section, ss shown in Fig. 3.1 with width w and thickaness t. Also,
shown im Fig. 3.1 is a cylindrical conductor whose ends are circular };
with a radius t/2. For this conductor the total "side-wall capaci- :5
T tance” <can be estimated with Eq. (3.5), where a = t/2 and {i
= d =t/2 +h, In the center past of the conductor, a uniform charge &3
;; distribution is assumed throughout the bottom side of the conductor, §
;_ so that the capacitance of this section can be computed with the
x: parallel-plate formula of Eq. (3.1). It was found by trial and error
o that the capacitance of the cylindrical conductor closely approxi-
CJ mated the capacitance of the rectangular comductor when a section of
lg width t/4 was taken from each end of the rectangle and replaced with
. a somicircular section oi radius t/2, as shown in Fig. 3.1. The
E total perimeter of the semicircular ends is nt while the total perim-
- eter removed from the rectanngle is 3t. Thus, there is a close

.

rar]
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Figure 3.1 Conductor with a rectangular cross-section.
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match., With the above assumptions and for the case w ) t/2, the
capacitance per unit lemgth of the rectangular conductor cam be

estimated with the sjmple formula

wt/2 2n
C, = sl + i 1, w2 /2
h In[1+2h/t+(2h/t(2h/t+2)) ]
(3.6
\:'
- When w ¢ t/2, it is not possible to remove sections of width t/4

from each end. Although this case is uncommon in integrated cir—
f; cuits, it was found that a reasonable approximation to the capaci-

tance could be obtained by using the parallel-plate calculation for

the entire width and modifying the circular capacitance approximation

in order to account for the fringing capacitance arnd to maintain con-—
tinuity with Eq. (3.6)., The resulting formula for estimating the

total capacitance per umit length in this case is

2'a'a‘a’a H‘A.L.:A_'A ‘Y

v n(1-0.0543t/2h)
C, = ¢l + I + 1.47]1, w < t/2
B 1n[1+2h/t+(2h/t(2h/t+2)) /")

el

(3.7

In both Eq. (3.6) and Eq. (3.7), the second term attempts to accouat
for the additional capacitance due to fringing effects at the edges
of the conductor. In the case of two layers of media, the first
term, parallel-plate term, and the fringing field term are weighed

with different dielectric constants. This will be discussed later.
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3.2.2.2. Results and comparison

Since the accuracy of Chang’s formula has been established in
comparison with the two-dimensicnal numerical computation, the capa-
citance values generated by it are used as the “true” capecitance ~ in
subsequent comparisons. First of all, the normslized capacitances by
the "cylindrical approximation formula” are compared with those by
Chang'’s formula in Fig. 3.2. Those capacitances are normalized with
respect to the parallel-plate capacitance, and they are plotted in
Fig. 3.2 for t/h = 0.1, 1, and 10. As w/h increases, all the normal-
ized values approach constant 1. In other words, the capacitances,
as expected, approach the parallel-plate capacitance when the width
is relatively larger than the distance from the ground plane, For
t/h = 10, the cylindrical approximation is within 5% of the actual
capacitance, and for t/h = 1, the error can be as large as 10%, but

only for w/h <{ 1. For t/h = 0.1, the error is within 20%.

Furthermore, for a more detailed comparison of various approzi-
mation formulas, the percentage errors of the capacitance values com—
puted by the thin-plate formula, Elmasry’s formula, and the cylindri-
cal formula, are plotted imn Fig. 3.3, Fig. 3.4, and Fig. 3.5 for
t/h = 0.1, 1, and 10, respectively. The referenced "true” capaci-
tance is obtained by Chang’'s formula Eq. (3.3). Note that the thin-
plate formulas and Elmasry’s formula are logarithmic-type approxima-
tions, and the errors are relatively larger for smaller w/h. While
the cylindrical formula is a reciprocal logarithmic approximation,

the error trcond is reveir. sd for smaller w/h. Hence, the error for

I R R ARl s W IR LR A S RN A S A IR SO SRR R A
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I' the cylindrical approximation is bounded within a smaller range aad
is more constant over the range. For example, at t/h = 1, the

cylindrical approximation has an error within +5% for w/h from 1 to

L. 50. As for the other two approximate formulas, the errors are 30%
| and 40%. However, for the extremal case, t/h = 0.1, the thin-plate
approximation, Eq. (3.2), generally has less error tham the cylindri-
cal approximation. It may be inferred that, for this case, the
charges are distributed more on the bottom side of the intercomnmnect,
-~ so that the infinitesimally thin-plate approximation is more realis-

tic than the cylindrical approximation. Consequently, Eq. (3.2) is a

better approximation is this case. For gemeral cases; the cylipdri-

cal approximation formula compares fairly favorably with the other

approximate formulas,

3.2.2.3. Two layvyers of media

ade

If the interconmnect is situated within a passivation layer,
e.g., SiN, on top of the oxide, SiO,, then the difference of the
dielectric constants has to be takenm into account in the calculation
of the capacitance. This can be accomplished by selecting different

weighting factors for the "parallel-plate¢” term and the “fringing”

term in Eq. (3.6) an Eq. (3.7). Consequently, for two layers of

r
— e e
PP N A S WP - AT a W W R )

dielectric media, the total capacitance is

PR

L e
'. " Ct = gox[(patallgl-plate term) + -—"ZL(fringing term) ] (3.8)

g
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In order to examine the errors, two-dimensional numerical compu-

tation, e.g., "CAP2D", is performed to calculate the actual capaci-
tance. In this caslculation, it was assumed that the passivation
layer is thick enough so that the field lines passing through the
outer boundary are negligible. Thus, the thickness of the passiva-
tion 1layer was considered to be infimite in the calculation of the
actual capacitance. The percentage error between this capacitance
and the capacitance obtain;d from the simplified formulas is shown in
Table 3.1. The cylindrical approximation means the formulas of ;:
Eq. (3.6) and Eq. (3.7) are modified according to Eq. (3.8), and the

thin-plate approximation means Eq. (3.2) is modified according to

TABLE 3.1 Percentage Error in Capacitance Estimation with
Two Dielectric Layers,

Percent Error

cylindrical approximation thin plate
w/h t/h = 10 t/h =1 t/h = 0.1 t/h = 0,1
1.0 ~-5.26 5.82 -18.24 -28.12 =
2.0 -5.74 0.50 -20.73 -16.53
10.0 7.06 -6.40 -16.30 -4.63

* The dieletric constants are : €ox = 3.9, ggiN = 7.5,
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'(§ TE Eq. (3.8). Note that the errors of the cylindrical approximation at
Eiﬁf | t/h = 0.1 are relatively large compared with those of the thin-plate
approximation, except at w/h = 1, As discussed previously, modified
’ ) A Eq. (3.2) is a better approximation than the modified formulas of
Eq. (3.6) and Eq. (3.7) in this case. Howsver, for the other cases,
RN t/h =1 and 10, the percentage errors of the cylindrical approxima-
tion are well within +10%. Despite the already-existing errors in
Eq. (3.6) and Eq. (3.7), the simple weighting factors in Eq. (3.8)
approximate the case of two dielectric layers satisfactorily. There—
fore, the simple formulas, except Eq. (3.3), may also be applicable
Tj:j = for the capacitance of interconne?t in VLSI circuits when the pas-

sivation layer is taken into accouant,

3.2.2.4. Cylindrical approximation on the overlap capacitance

;ﬂﬂ h The overlap capacitance between the gate and the source or the
[ L

- ‘f gate and the drain in an MOS device is an important parameter in cir-
Tes cuit simulation, It affects the MOS model in the circuit simulation

program and impacts on the c¢ircuit response. Typically it was

4," w . - .,'._
Sy T e

estimated by the parallel-plate formula as Eq. (3.1). As a side
‘;:f . topic, it was found out that the cylindrical approximation formula

can also be applied to the estimation of the overlap capacitance.

A simple model and formula were derived for the overlap capaci-

tance in an MOS device in [25]. Assuming the side walls of the gate

.f Y and those of the source are vertical boundaries, as shown in

Fig. 3.6, the simple formula derived in [25] was expressed as
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A 2 (d+A) 2 z
. . C = ——e 1n(l+ -—xr-—) + 8 + —e.. 1n(1l + —Lsinﬁ)
- ov n OX t ox a Si
" ox ox
- (3.9)
.7
t 1-cosf
- [ *) A = —2%_ .
- 2 sinf
:
p=-I-. Sox
i 2 ®si
-, :
S
i; Note that ”tox" is the gate oxide thickness, "d” is the overlap
o . width between the gate and the source, "xp" and "xj" are the thick-
;j . nesses of the gate and the source, respectively. The accuracy of this
J
. i! formula is manifested in [25] by comparison with experimental data
and two-dimensional device model simulation. ti
Employing the basic idea of the c¢ylindrical approximation for 5
. *'
)
| the fringing fields of the finite thickness of the gate and the §
- e <
source of an MOS device, we cap obtajim the cylindrical approximation -ﬁ
: ’Q on the overlap capacitance as :3
d 0.5n 0.5n
Cl_=c¢ +e -t 8 :
Ll e a2 Y B da(ey(y(ee2n) M)
o
: . where p = 4tox/xp Py m Atg,/xg (3.10)
o+
(] .
. Savg * (8535 * 8o,)/2
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The first term in Eq. (3.10) accounts for the parallel-plate com—
ponent of the ;apacitance, the second one results from the fringing
field of the gate, and the third term is due to the fringing field of
the source. Becanse the source is embedded inside the silicom sub~
strate, the difference in the dielectric constaant between silicon

oxide and the substrate is taken into account by the factor eavg'

A few selected data points comparing Eq. (3.10) with Eq. (3.9)

are given in Table 3.2, The errors are mostly bounded within 1% for

i

TABLE 3.2 Comparison of Simple Formulas for Overlap Capacitance. ;
- - _— _ _ —_
. . \
¢ *ox Tp %5 Cov Cov
0.2 0.035 0.4 0.4 4.104 4.074
0.4 0.035 0.4 0.4 6.128 6.098 -
0.6 0.035 0.4 0.4 8.152 8.122
0.8 0.035 0.4 0.4 10.176 10.145 -
1.0 0.035 0.4 0.4 12.200 12.169 .
0.5 0.5 1.0 1.0 1.295  1.301
e 0.5 0.5 0.5 0.5 1.009 1.082
~ 1.0 0.02 0.2 0.5 20.234 20.342
NN 0.5 0.02 0.5 0.2 11.025 11.134 X
r‘;-: o
?ﬁﬁ 10.0 1.0 10.0 10.0 5.519 5.467
n-"vi:
o I — -
IE:% . cov is the capacitance calculated by Eq. (3.9), and C!
:}\; is that by Eq. (3.10).
'~
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various combinations of paramters. Thus, it can be said that the
cylindrical approximation on the overlap capacitance is as good a
simple tormula as that proposed in [25]. Hence, the cylindrical
approximation can be more generally applied to the estimation of the

fringing capacitance due to the thickness of a plate.

To sum up, the "cylindrical approximation formula” seems capable
of being generally applied to the estimation of the fringing field
capacitance, be it due to the side walls of an interconnect, or those
of a gate or a source. Besides, the errors from it are bounded
within a reasonable limit, and the expressions are simple emough for

the application in the extractiom programs for design verification.

3.3. Coupling Capacitance

In VLSI circuits, as the design rules become more stringent
interconnects are closer together; inevitably, the coupling capaci-
tances between the iaterconmects become important and have to be
reckoned with in the circuit simulation. By numerical computation
methods, they can be evaluated rather accurately along with the
self-capacitances, However, as mentioned before, it is essential to
have a simple formula for coupling capacitances im order to incor-

porate theam into the extraction programs for design verification,

Since the coupling capacitances are stroangly related to the
self-capacitances, it is not easy to treat them separately and derive
a simple formulas solely for the coupling capacitance. For example,

the simple formulas derived in [24] are for the estimation of the sum

g
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of the coupling and the self-capacitances for two interconmnects.
However, one method for generating a simple formula for the coupling
capacitance uses a “least square fit” on the data obtained from
numerical computation. In [24] the simple formulas have been
obtained by this method. Employing the programs described in Chap.2,
i.e., “CAP2D" and "CAP3D”, we can collect a few sets of data on dif-
ferent configurations of interconmects. Then utilizing a subroutine,
we can fit different formulas with multiple coefficients to the data

in search of better simple formulas. i

3.3.1. Coupling capacitance between two parallel intercommects

Let us consider the configuration of two parallel interconnects
in a homogéneous medium similar to the figure shown in Fig. 2.8. In
the most general case, there are seven parameters to consider : the
width ”w”, the thickness "t”, and the distance "h” from the ground -

plane for each intercomnect, plus the separation "s”. In order to

4

reduce the variables in the simple formula, let us assume that both e
interconnects possess the same parameters, and one of the parameters

is utilized as the normalizing factor; then, in essence there are

three variables. In [24] a simple formula for two interconnects with

'y
R

identical parameters was derived, It estimated the sum of the self- -

AP AN o

RIS B
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and the coupling capacitances for onme intercomnect. It is ﬁ




-—1,34

0.333
C =8, (1.15(w/h) + 2.80(t/h) + (s/h) .

[0.03(w/h) + 0.83(t/h) - 0.07(t/m)°° %1}

The accuracy of the formuls has been shown in [24] to be within +10%
of the two-dimensional numerical computation. But the coupling and

the self-capacitances are not separated,

In order to obtain a simple formula solely for the coupling

capacitance, the same "least square fit” method is applied on the

data calculated by "CAP2D”, and a similar formula is obtained :

-1,05817

1.617 1.56
Cis = £,,00.0046(w/t) + 0.0271(h/t) + (s/t) .

¢.348 0.203

[0.496(w/t) + 0.914(h/t) 1}

The errors of this approximate formula, Eq. (3.12), are given in
Table 3.3. Hence, Eq. (3.12) can be used in comjunction with
Eq. (3.11) to evaluate the self-capacitance and the coupling capaci-

tance individually.

3.3.2. Three-dimensional cross—over geometry

In this section the configuration of perpeandicular cross-over of
two interconmects in Fig. 3.7 is considered. As in the previous sec-
tion, to reduce the variables considered, both interconmnects are
assumed to have the same width and thickness. Since the coupling

between the two over the <cross—over region 1is of interest, the
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Figure 3.7 Configuration of cross—over geometry of two interconmnects.
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TABLE 3.3 Percentage Error of Eq. (3.12).

w/t h/t .500 1.000 2.000 5.000
1.00 .30 -3.7245 -9.5482 -3.5060 42.2329
1.00 1.00 -2.2482 -12,6091 -12.9382 20.208S5
1.00 2.00 1.6377 -12.7294 -18.5078 2.8354
1.00 5.00 15.0499 -.5205 -6.5252 14,9383
2.00 .50 -1.0380 -9.9699 -8.9054 21.9106
2.00 1.00 .2764 -12,7097 -16.4034 6.5781
2.00 2.00 3.2419 -13.3229 -21.3423 -6.1157
2.00 5.00 14,4955 -3.5693 -11.8742 4.3947
5.00 .50 4.4536 -8.4302 -12,.6018 5.5028
5.00 1.00 5.6243 -10.7517 -18.1644 -4,0452
5.00 2.00 8.1620 -11.3784 -22.0076 -12.5019
5.00 5.00 17.2850 -3.9135 -14.8168 -3.9239

10.00 .50 11.4921 -2.1553 -6.1729 14,9096
10.00 1.00 12.1799 -4.7770 -11.6876 5.6213
10.00 2.00 14,3737 -5.7158 -15.7960 -3.4468
10.00 5.00 22.6563 .6820 -10.2202 1.2573

lengths of the intercomnects are assumed to be five times the widths
to reduce further the number of variables.
izing factor, we have a total of three variables, w/t, h/t, and
In this case, the parameter "h” designates the distance of the lower
interconnect from the ground plane.

to evaluate the coupling capacitances in this configuration, and the

data are shown in Table 3.4,

the variables

w/t, B/t, and s/t were tested.

seems to have the smallest error:

.......

A few approximate formulas composed
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Using "“t” as the normal-

The program "CAP3D” was employed

The following formula

.........

s/t.
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TABLE 3.4

s/t

w/t h/t 0.500 1,000

Coupling Capacitance of the Cross—Over Geometry.

.............

2,000 5.000

1.000 .500 39.323 27.732
1.000 1.000 41.811 29.811
1.000 2.000 44.749 32.364
1.000 5.000 48.032 35.659
2.000 .500 78,091 60.677
2.000 1.000 84,008 65.220
2.000 2.000 89.104 70.923
2.000 5.000 98.345% 79.420
5.000 .500 204.420 168.070 1
§.000 1.000 209,290 174.9300 1
5.000 2,000 207.090 179.510 1
5.000 5.000 224.790 199.5%0 1
10.000 .500 500.330 412.840 3
10.000 1.000 480.290 407.360 3
10.000 2.000 436.340 386.570 3
10.000 5.000 419.600 387.050 3

Cas = 5, (0.0034(w/t)” """ = 5.624(n/1)°

(6.74(w/t) """ + 6.25(/t)° "

Note that the dielectric constant €
Farads. The percentage errors of the appr

pared with the coupling capacitances in

Table 3.5.

in Eq. (3.13)

16.808 6.132

18,386 6.986

20.450 8.243

23.406 10.38S .
41.846 19.473 -
45,190 21.395

50.281 24.652

57.593 29.873

26.430 74.454

33.640 79.888

42,740 88.719

63.530 105.730

13.010 192.930

18.000 201.730

17.970 214,240 -
36.120 243.620 '
0178 -0 .54

+ (s/t)

71

11 (3.13)

is in wunits of

oximate formula (3.13) com-

Table 3.4 are listed in
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TABLE 3.5 The Percentage Errors of the Simple Formula (3.13).

s/t
w/t h/t .500 1.000 2.000 5.000
1.00 .50 3.3618 -2.7977 -3.3277 -8.9060
1.00 1.00 £.0931 -1.1252 -1.2234 -1.3110
1.00 2.00 6.5507 -.0683 -.5180 1.8643
1.00 5.00 11.1813 3.0278 1.2737 3.2677
2.00 .50 3.8913 -3.3425 -1.8682 120.9546
2.00 1.00 .4967 -6.2124 -4.8980 16.2017
2.00 2.00 -1.0536 -9.7125 -10.1856 6.9443
2.00 5.00 -4.5365 -13.8360 -15.7542 -3.9548
5.00 .50 6.2601 -1.4563 -.9216 14,2679
5.00 1.00 5.3622 -3.8641 -4.8359 8.1325
5.00 2.00 8.2874 -4.7362 -9.3735 -.9373
5.00 5.00 2,3064 -12.1174 -18.8404 -14.6741
10.00 .50 -3.4869 ~-8.4098 -5.3784 11,2182
10.C-. 1.00 1,2263 -6.5592 -6.2619 7.0149

10.00 2.00 12.2793 -.7924 -5.5665 1.4674
10.00 5.00 18.1225 .2205 -9.6661 -9.8139

Note that Eq. (3.13) has a similar structure to that of
Eq. (3.11). Also the maximum percentage errors are +20% and -18%,
snd the nomial errors are around 10% as seen in Table 3.5. Siace
more levels of interconnection are needed in increasingly complicated
VLSI circuits, Eq. (3.12) would be helpful to estimate those coupling

capacitances between levels of interconnects,
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The approximation formulas discussed in this chapter can be [

viewed as a means to incorporate the capacitance information computed ﬁ::; 4

in Chapter 2 into the extraction programs. Another method, e.g., iy

( table 1look-up, cam also be used instead of using the "least square .
}E fit” on the data to find an approximation formuls. However, these
. approximation fornnl;s may slso provide a physical interpretation and
,. are simpler to handle., Thus, they are also useful im the circuit

- design.
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(K | CHAPTER 4
~
R .
SRS NETWORK EXTRACTOR
i~ .
ALEE
4.1. Introduction
The design process for LSI or VLSI circuits still is not fully
: sutomated today, but contains more or 1less manual design steps.
::: a These manual and the interactive layout techniques which are used to
j: . optimize the layout design inevitably introduce human errors and
;. " inaccuracy into the design. Comsequently, it is imperative to fully
" u check the 1layout and verify the design. VWith the ever—growing cir- '
‘« cuit complexity, some automated tools for design verification are q
.:‘ necessary. Figure 4.1 shows a process flow of design and the F:
- E interaction of the design tools at various stages, The first step in ':
::: the design verification is the artwork (or topological or mask or ?
'.:',; layout) analysis. This step basically transforms the layout informa- ‘
N tion back to the circuit information for rechecking the circuit per- %
« T .
._ f-s formance. It can generally be classified into three distinct, but
- highly interrelated catejories [33] : (i) coanectivity checks, (ii)
b © design rule checks, and (iii) the calculation of electrical parame- 'j‘
N <
\ ters. The connectivity checks examine the physical connection of the ,
j:E . layout elements to see if there are short circuits or open circuits, ::
i "‘; Design rule checks basically examine the tolerances between geometric
:';‘ (. elements to see whether they are in accordance with the process
NS

<
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requirements. The calculation of electrical parameters should

a s 4N
r

:_. - include both the transistors sad the intercomnect parameters. For
: :‘:-‘ example, the channel width, the channel length, the areas of source
"‘*‘g ? and drain, and the overlap capacitances, etc., are j.-portant electri-
E{.: . cal parameters for transistors. The capacitance and the resistance
'};‘ ::-? are the electrical parameters for the interconnect. In the liters-
._ = ture, most network extractors that have been developed concentrated
. = on the connectivity checks and the design rule checks [27,36], or the
- efficiency of the algorithms [32,34,35], or the hierarchical combina-
\_’ . tion of the computer—aided tools [32,37]. Not too much effort has
\ ":.- been spent on the extraction of the electrical parameters, Hence, in
7:'-:' u the network extractor developed here, our main goal is to conceatrate
‘3 on the third aspect of the layout analysis, i.e., the calculation of
f;::: :‘:‘ electrical parameters, especially the intercomnect capacitances.
: e In the face of the growing circuit complexity, the lengths of
:21 ~ the intercoanmects on the chip have to increase as pointed out in
§ f [(18]. Due to the smaller sizes of the transistors and this increase
': — of interconnects, the electrical parameters of the interconnects
LS
\:‘ N become essential. Furthermore, those parameters usually are not
fi - takean into account in the design phase by the interactive layout
= technique, so it is important to include them in the design verifica-
.-E\ 5 tion to ensure satisfactory ocircuit performance. In the previous
i':. o chapter, approximate formulas for the intercomnect capacitances have
.; = been discussed. They are used in the extractor discussed in this
':.2 ; chapter to calculate the intercomnect capacitances,
I::: <
A
a
; R T T R R B R BRORRDVNTNE
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General Propertjes of the Extractor

The extractor. is coded in PASCAL, and some important properties

of it can be summarized as follows :

(1)

(2)

(3)

CIF format : The imnput of the layout information to the extrac-
tor should be in CIF (Caltech Intermediate Form) format as
defined in [38]. However, not all the definitions of CIF are
rocognized, e.g., round flash and some user—defined extensions
are not known to the extractor and errors will result.
Nevertheless, there is an optioa "-u” in running the package to
ignore the errors resulting from user—defined extensions. It
should also be .pointod out that the coordinates of the input
rectangles should be integers; in other words, the fractiom
numbers after the decimsl points in the coordinates will be

chopped off.

NMOS technology : The extrsctor assumes NMOS technology and the

design rules defined in [38].

Maphattsp geometry : Since most layouts do not contain angular
geometries and for the sake of simplicity in the extractiom pro-
cess, all the geometries on the layout should be rectilinear
with respect to either the x or y axis. However, the originsal
version of the first part of the code from Mike Graf was

intended to isclude also the non—Nanhattan geometry. Conse-

®The first part of the code which reads in CIF file and sets up

I A AT L

the 4~d binary trees for the rectangles on every mask is due to Mike
Geaf (40].
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quently, there is some redundancy in the definition of the rec~—

tangle record.

Rectangle-baged dats structure : The basic entity of the data
structure is a rectangle on a mask. All the rectangles on the
same mask are then linked together to form a 4-d binary search

tree with right thread. [26,40]

Trapsistor configuratiog : It is assumed that the overlap of

diffusion and polysilicon regions constitutes a transistor chan-
nel. For the sake of simplicity the extractor omnly recognizes
basically two configurations of transistors, i.e., those formed
by one diffusion rectangle and ome polysilicon rectangle or
those by two diffusion rectangles and ome polysilicon rectangle.
Specialized transistor configurations, e.g., those long, serpen—
tine ochannel regions of output buffers, are not recognizable.
Warning messages will be generated for these unrecoganizable
overlapped regions of diffusion and polysilicon in the output
log file. Functionally, the extractor will categorize all the
traasistors into three different types of transistors, namely,
load, drive and pass transistors. The channel lengths and the
widths of the traasistors are evaluated and included in the out-

put SPICE file.

Output format : The transistors, resistors and capacitors are
reported in a form compatible with the SPICE input format. Also

the node numbering is automatically dome in the extractor. For

exsmple, the node "0" is reserved for the ground node, and ”5"

.......
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is for the power node. Every center node of the T equivalent
lumped ocircuit for an interconnect has a node pumber Sxx in
order to distinguish it from other node numbers which start from

6" and are incremented one by one,

Parameter file : All the process parameters are stored in the
"constant .h” file. For example, the field oxide thickness, the
thickness of the intercomnects, sheet resistance of polysiliconm,
metal and diffusion, etc., all should be given in this file, and
the extractor will fetch the information from this file in the
process of extraction. In order to screen off small resistances
and capacitances from short intercomnects, two parameters
"CLINIT* and "RLINIT" can be set in this file such that the
interconnect resistances and capacitances smaller than those
values will not be reported. Other parameters in "constant.h”
include "WIREGAP" and "BRANCHGAP”, which are used in the compu-~
tation of coupling capscitances, and will be discussed in a

later section. .

Dats Structure

In this section, the data structure used in the program is dis-

cussed. Since the program is coded in PASCAL, the “record” defini-

tions of "rect”, "transistor”, "catlist”, "wire”, etc., are imstruc-—

tive

to illustrate the data structure,

The record of a rectangle in the program is defined as :

*
rect = record
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key : array(0..3] of real; (* four keys :
key(0] = xmin
key(1] = ymin
key(2] = -xmax
key[3) = -ymax ¢)

mask : masklevel; (* -7...7%)

1son, (® left son in tree structure *)

r3on : rectptr; (® right son in tree structure *)
ndisc : integer; (® discriminator of successor—

only valid if rson is a -thread *)
lapdicator : integer; (* an indicator *)
end;
rectptr = AArect;

The parameter "mask” in the above definition indicates the mask

level on which this rectangle resides. The mask levels are desig-

nated as follows :

= diffusion
= jon implant
= polysilicon
= contact cut
= metal

= buried coatact
= overglaseing

SNAWUMEWN -

Usually we are concerned with only four mask levels, i.e., diffusion,
polysilicon, contact cut and metal. The levels of buried contact
cut and overglassing are neglected in this extractor. Note also
that, as a rulo.. the pointer to a certain data type is named by
appending "ptr” to the name of that data type. Thus, "rectptr” is
the pointer to rect, and "rectptr =Arect” is PASCAL’s way of specif-

ication,

*Only those specifications which are utilized in this extractor
are listed here. Others concerning non-Manhattan geometries and the

optimization of the binary trees are not included, though they are in
the program.
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A 4-d binary search tree with right thread is built for the rec-
tangles on each mask level. Those three parameters "lson”, “rson”
and "ndisc” are used to link the rectangles in a binary search tree.
Each rect record is stored as s node in the tree, and lson, rsom are
its two pointers which are either null or point to another node 1in
the tree. (Or each pointer can be considered as specifying a subtree
to this node.) The discriminator of a node is an integer between 0
and 3 in a 4-d binmary tree. Its purpose is to specify tﬁe relative

orientation of the node to its sons and its parents, It is deter—-

mined as follows : The root of the tree has discriminator 0. Its -
two sons have discriminator 1, and so on. The discriminator of level ::
4 becomes 0 again. The cycle repeats between 0 and 3. Generally £
speaking, for any node P in the 4-d biniry tree, let j be its i
discriminator, then for any node Q in the left branch of P, it is

true that koyj(q) 4 keyj(P); likewise, for any node R in the right -

branch of P, koyj(n) b keyj(P). In case keyj(Q) = keyj(P). then the
next key, (j+1)mod4, is compared, until the order is decided. If all
keys are equal, thenm the two rects are identical, no node will be
inserted into the tree. In aiding the search process, a right thread
is added to the tree [39]. A negative mask value in the rect record
indicates that the right son of this node is a right thread not a
true son, and "ndisc” contains the discriminator of this successor
which is linked by this thread. It should be noted that the parame-
ter "ndisc” is only valid when the right som of the node is a right

thread, i.e., the mask is a negative integer.
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In Fig. 4.2 an example of some rectangles on a mask and its
corresponding 4-d binary search trees are depicted., The dotted lines

in the tree represent the right threads and the solid lines are

"true” links of the trees. Those right threads should always point
to previous =nodes, i.e., mnodes that have been visited before the
current node in the search process. A "nil” st the rightmost end of
the tree signals the end of the search. Note that the binary search j

trees are different depending on the insertion order of the rectan—

gles. To be more specific, two different insertion orders and their E
resulting binary search trees are shown in Fig. 4.2, These two 4-d
binazy search trees all represeant the rectangles shown in Fig. 4.2,
yot they have different structures, Since the efficiency of the
search process obviously depends on the structure of the binary tree,
the insertion order which is random in this extractor affects the
efficiency of the search process., One attempt to optimize the search
process is to try to balance the heights of those binary trees. This
was 1included im the original version by Mike Qraf. but is not con-
sidered here. Finally, the parameter "lapdicator” is an indicator
for the subsequent search process to indicate that this rectangle has

been used already. .

The transistor records are defined as :

transistor = record
ttype : nmostype; (* three types :
load, drive, pass ®)
width,
length : real;
drain,
source : remrectptr; (®* source and drain rects *)

aa dfmoid a A a0 A
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gate : pdlaptr;

r B

5 dnode,
T snode,
e gnode : integer; (* node numbers *)
DA end;
o tranptr = Atransistor;
L
‘;ﬁ? Most of the parameters defined in the above record are self-
::i o explanatory. Those diffusion rectangles residual of the overlap
_-} ;: regions of the transistor channels are designated as “remrects”. All
‘j'; of these remnant rectangles are built into a remmant tree as before,
i; "Gate” is s "pdlaptr” which is a pointer which points to a record
;;; o "pdlap” where the keys and direction of the overlap region are kept.
'zi = All of the overlap regions of diffusion and polysilicon represented
- r7 by this pdlap are also built into a 4-d binary search tree with right
i;_ h thread. "Dnode”, "snode”, and "gnode” are integer variables to keep
;;f 3§ track of the node numbers of the drain, source and gate of the
#?. " transistor. They are initislized to negative integers first. After
f!, o extraction is complete and all the elements are intercoanected, these
Ei; jﬂ variables should become positive and indicate the node numbers of the
=~ _ transistors, If the extraction process fails to connect this
lé‘ ;: transistor, the node number will stay wnegative, and this is very
;E; - helpful for debugging.
,35 - Another useful data structure in the program is & linear 1list
i&{ 33 which connects some relevant rectptrs, e.g., the constituting rectan-
EE; o gles in an interconnect can be represented as a linked list, and it
- is defined as :
i; cntlist = record
[
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this ! rectptr;
next ¢ cntlistptr; (* successor in linear list *)
multipty : integer; (®* multiplicity *)
catdir : direction; (* direction of this rect—
' used in coupling cap *)
width : real; (®* width perpendicular to -
cntdir *)
found : Boolean;
end;

catlistptr = Acntlist;

The parameter "multipty” is used in the computation of interconmect
parameters indicating the multiplicity of this catlist in the search
process. “Catdir” and "width” are designed for use in the computa-
tion of coupling capacitances., "Found” is a toggle switch used in

the program to indicate the status of this rectangle. It should be

YL

mentioned that the creatiom of this data record to form linked lists
of rectangles instead of tagging more fields to the rect record aims
at ninini;ing modifications to the already defined rect record in the
original version. This way there may result in some cumbersome slgo- o
rithms and redundant procedures. Thore(pre. future improvements on
the program may abolish this data record and carefully replan

another,

In order to identify all the connected rectangles linked between
transistor "ports” which constitute am interconnection system, a data 4;
record wire is set up to represent it. A transistor port is defined
to be the gate, source, or drain of a transistor. An example of such
a8 wire is shown in Fig. 4.3 with the corresponding equivalent lumped

*al

circuit. The record of wire is defined as :
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PORT 2

KNOT

PORT 1

PORT 1

P. s ¢ e's o

Figure 4.3 An example of s "wire”,
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wire = record

bouand : array(0..3] of real; (* rectangular bounds *)
endport : array(0..MXPORT] of portptr;

portaum : integer; (* aumber of portptrs in endport *)
knotray : array[0..MXPORT] of portptr;

knotcat : array[0..MXPORT] of catlistptr;

knotaum : integer; (* no. of elements in kmotray,
knotcat *)
branchray : array{0..MXPORT] of branchptr;
branchaum : integer:; (®* no. of elements in branchray *)
wirehead : catlistptr; (® head of wire list ®)
end;

wireptr =Awire;

"Bound” is the outmost four—corner boundary points of this wire, it
is defined the same way as the keys in rect. Its main purpose is to
screen off unmecessary comparison between wires in the calculationm of
coupling capacitances. Yhen two wire bounds are separated by more
than the parameter "WIREGAP®” specified in the "constant.h” file, no

further comparisons between branches inside the wires are needed.

Since a wire links a few transistor ports together at the ends
of the wire, a data structure "port” is built to represent those
transistor ports. "Endport” is an array which stores those pointers
of the tramsistor ports. A "knot" is a rectangle which is conmected
to more than two other rectangles in the wire 1list as shown in
Fig. 4.3. In order to conform with the transistor ports at the boun-
dary of the wire, knots are also defined as ports. *Knotray” col-
lects those port pointers pointed to the knots in the wire.
"Knotcant” is also am array of catlistptrs which point to those knot
ractangles, A "branch” is the linked list of catlistptrs which con~

stitute the interconnection between two ports in the wire. A T-

equivalent lumped circuit is specified for each dbranch in the wire,

.......
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aad the equivalent resistance and capacitance are computed according
. to the branch. As the others, "branchray” collects those branches.

For each array, there has to be an integer ‘to indicate the number of

E? elements in the array, and "portnum”, "knotnum” and "branchnum” in
the definition are those integers.

4.4. Extraction Progedure

:: Since the first part of the program which reads in CIF inpuf

fﬁ lines and sets up the 4-d binmary search trees for the rectangles on

.? each mask level was obtained from Mike Graf as mentioned earlier, we

- would like to concentrate on the discussion of the second part of the

- program, i.e., the extraction of the transistors and the interconnect
parameters. The program is coded in PASCAL and separated into nine
G subprograms and one main program. The first part of the code is con-

tained in subprograms "exfirst.p” and "exsecond.p”, Note that "®,p”

b

P

R is the defaulted format on the VAX/UNII. system to indicate a PASCAL
progranm.

- 4.4.1. Find the diffusion and polvsilicon overlap

First the transistor channel region should be identified.

E: According to the NMOS process in [38], the overlap of diffusion and
polysilicon rectangles constitutes a transistor. Therefore, a search
for every diffusion rectangle on the mask through the polysilicon

ol binary tree to find any polysilicon rectangle which overlaps this

a trademark of Bell Laboratories.
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o diffusion rectangle should be done., If an overlap is found, a record )
'fg of type pdlap is set up in memory and a pointer to it is gemerated.
;E: Next all those pdlaptrs are stored in a 4-d binary search tree as are )
:J those of rectangles. The insertion algorithm will be givem in detail

Eg in Sec. 4.6 and it is similar to that ia [26]. In the record pdlap,

:k the coordinates of the overlap region, the pointers to those two rec—

- tangles which form this overlap regiom are kept.

fiz Note that in the process of finding the overlap region, all the

a relative positions of two rectangles on a plane have to be con- =
ihs sidered. They are : overlap, meet at a line, meet at s point, and e
a disconnection. If one rectangle is totally emclosed inside another, .
" this can be considered as a special case of overlap, The cases in Tﬁ
:; which a polysilicon rectangle and a diffusion rectangle meet at a N
E; line or at a point are illegal for the design rules employed here. :
? Hence, warning messages will be produced in the log file. Last, the ??
.§§ above runctions are performed by the subprogram "exthird.p”. N
b v
b 4.4.2. Set up tramsistors -
;3 After the overlap regions are identified, tranmsistor records s
:;‘ should be established. Since the chanmel regionm of a transistor can .i
.; be made of commecting overlap regions, they should first be located. -
;3 | For each node in the tree of overlap pointers, a search for adjoining

é; overlsp regions in this tree is conducted. All the found connecting .
i overlap regions are built into the gate of a tramsistor. If no other =
S adjoining overlap regions are found, then this solitary overlap ES
:3 region also comstitutes the gate of a transistor. As mentiomed

Co g
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before, the possible configurations of a transistor are limited in
this extractor for the sake of simplicity, and there can be at most
two connecting overlap regions to form a transistor channel.

Next, the drain and the source regions should be identified.
They are those remmant regions of diffusion rectangles outside of the
channel regions already identified as gates. The above-meationed
limitation is mostly intended to simplify this process, Because the

remnant regions from a serpentine—shaped channel region would not be

@ .

rectangles, but rather polygons, they are not easy to handle within
the frame of the present data structure. With the above limitations,
the remnants sre still rectangles, and they can be separated from the

channel regions and identified by a procedure called "split” in sub-

,,.‘./‘ .@ L".','

program "exfourth.p”. Thea remrect records are set up for those

»

remnant regions, and all of them are also linked into a 4-d binary

tree. In transistor record, the pointers to the source and the drain !

"remrects” are also kept for future reference in the extractor.

Additionally, the type of the transistor should be defined.
Since the "load” transistor is assumed to be depletion type and has
its gate comnected to its source, the special characteristic of a
contact cut overlapped witk the gate region is used as a criterion to
identify it. The intersection of the iom implant region with the
gate region can also be used as the identifying mechanisam. However,
the former method is employed here. . The pointers of those load
transistors are kept in an array "loadtran” with an integer variable

"loadnum” to indicate its number of elements. The other tramsistors,

1

AL S0
o .
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be they pass transistors or drive transistors, are kept in another

: array "othertran”, These procedures are performed in subprogram
é: "exfourth,.p”. |

2 ' 4.4.3. Find the pover snd the sround

.EE It is assumed that sll the ground nodes are connected by a net-
}: work of rectangles and that they collapse into a single node "0” in
:a the circuit simmlation. This applies to the power supply too, and
\E the power network is designated as node ”"5”,. In order to string both
A networks in two linesr linked lists, coordinates of two points have
ZE to be fed in interactively. Then the two rectangles which eancompass
ié these two points are selected as the "heads” of the respective lists.
‘.' A "depth~first” search [31] is then performed to find all the rectan-—
EE gles in the lists. The procedures "connmect” and "setconnect” perform
2: this function,. These procedures are used constantly in the latter
:: part of the program to find comnecting rectangles for "wires”.

‘AN

t; The procedure "setconnect” is used to search through the speci-
"

fied mask level given the pointer of a cantlist and its rectangle.
The data record ontlist, which was discussed in the previous sectionm,
is employed saad its pointer is na-;d ®catlistptr”. Note also that
the parameter lapdicator in the rect record is set for the rectangle
which has been selected so that it will not be used again in the
search process. The "depth (first” search starts with the head
cntlistptr snd its rectptr as the seed, finds all the rectangles on

the given mask level which are conmected to it, and links them in the

A AL 'S

A

list. It then goes to next cntlistptr on the list, uses it as the
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& . seed, and continues to search the same tree for comnecting rectangles
~

2 without a set lapdictor until no rectangles can be found.

l‘.“
L d

Since the conmstituting rectangles of an iatercomnect or the

[ .s—‘n

:: power network may not necessarily be all contained on one mask level,

:.é - the sesxrch process should be able to extend to other mask levels as

‘ - well. Utilizing the fact that those interlevel conmections can only

:‘ r‘ be made through contact cuts, the procedure "coanect” then performs

f‘_ : this extended search. It will call upom “setconnect” and search not

< o only the mask level of the seed but also the mask level of the con-

" > tact cuts. The pointers of the found contact cuts are also linked in

, - the linear list in the "depth first” search. Then, whenever s con~-
. tact cut is encountered as a seed in the process, all three levels

-. (diffusion, polysilicon, and metal) have to be searched by the pro-

:".:E '.::: cedure “setconnect”. This way all the commecting rectangles, even

~ q scross different mask levels, can be found, and the power network and

';-.“ :~ the ground network are stored in two lists headed by "powerlist” and

" ." "groundlist”. The above procedures are contained in the subprogram

" . mexfifth.p".

R

Y 4.4.4. Seot uyp power and ground modes

RN

:' ) First the remrects of "loadtrans” are searched to see if they

s :I: are connected with any rectangles in the powerlist, If a contact is

% \}- found, then this remrect is designated as the drain of the transistor

i :“ snd ‘a default node number 5 is set., The other remrect is automati-

% :f'f cally set as the source of this load transistor. Next the remrects K
:: i of " othertrans” are searched and compared with the rectangles in the
» :3 R
4 -
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VN —
'E_n groundlist. Any remrect comnected to this list is set as the source

\J *‘ -

S

fxfi of the transistor and s default node number 0 is designated. Another

L .

DN

ST , Temrect of this transistor will be set as the drain of the transis-

, ~
Y tor, meanwhile, the tramsistor will be named as "drive” transistor. K
352 The procedures "setpowernode” and "setdrivenode” in subprogram
LS
o "exsixth.p” perform the above functions.

\ ;
.;iy Note that the resistance and capacitance of the power and the _j
TSN

{}E ground networks are not considered in this extractor, The power and .
N ~:,‘-' ~

R the ground are assumed to be at conmstant voltages and are designated 2
3?33 to be node § and node 0, respectively. Also the unset nodes will =
fﬁ{ retain their initialized negative values after this step.

o
' a
4.4.5. Find wires
'\j‘ After extracting the power and the ground network, all the e
Lo
L
S remaining undecided sources, drains and gates of transistors should "
::ﬁ be linked together by "wires”. Starting with the uaset source or
N .
Zaz. drein nodes of load transistors, and then the uaset source, drain or =
g
3‘ﬁ gate nodes of other transistors, we proceed to find all the wires. —
o |
iﬁ#' First, using an unset port of a transistor as the head of a
-l\::' \-'
¢\f list, we can search for comnecting rectangles by the procedure "con- yﬂ
e gect”, and the data record wire is built im the process. The origi- -
N >
:?:~ nal starting node of the trangistor is the first element in the array -~
:2é§ "endport” in the wire record. In the process of depth first search, o i
] -
A each rectangle in the list is also compared with other unset nodes of !
e .
\i:; other transistors in arrays "loadtran” and "othertran”, If a contact
LN
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i t? is found, then those nodes will be included as ports of this wire in
‘fﬁé . the array "endport”. Note that this process only searches for those
i;j o rectangles which have not been selected in the previous search pro—

‘: E? cess. (Lapdicator in the rect record will indicate to that effect,)
Ix.: - -

f Thus, the search process will end when all the comnected rectangles

5 e

_Eﬁ ‘- in an interconnection are found, and the ending ports of the wire
%;; T will also be fouad and kept in the array. The above functions are
\n: N \.f

_ft e pecrformed by the procedure “findwire” in the subprogram
sy .

o -l "

AN exeighth2.p”.

< \- P
RN

ST 4.4.6. Compute jntercommect resistance and self capacitance

el

From the data record wire, the equivalent circuit parameters can

|
&

N be computed, i.e., resistance and capacitance. As shown in Fig, 4.2,
‘i{i ;E the interconnection of a wire may be multiple-coanected, i.e., there
3iii o are knots at the intersection of the branches, Ia order to identify
f;, ;g those knots, the linked list of rectangles has to be searched first,
§§§ o Any rectangle im the list having more than two comnections to other
i&f B rectangles is considered a knot and they are stored in the arrays
i{i ;; "kaotray® saad "knotont”, A branch is defined as a linked list of
?éa - rectangles between two ports remembering that knots are also ports.
‘i:i ii For each branch in the wire, a corresponding T equivaleﬁt lumped cir—
::E e cuit is set up as shown in Fig. 4.2. Heuristically the two resis-
:E; e tances sare assumed equal and half the value of the dc resistance
:;é g% which is calculated from the linked list, Furthermore, the capaci-
f:z: N tance to ground is the self-capacitance calculated by the "cylindri-
A

\ ~

« " cal approximation formula” given in Chapter 3. Note that the formula




A AL Sl

112

is a two—-dimensional one, and the calculated value from the formula
has to be multiplied by the length of the branch for the total capa-
citance value. No special considerations are given to corners and

bends in the branches.

It is important to mention that the rectangles of the knots are
included in 2all parameter computations of the branches which are
connnected to them., If a long rectangle is designated as a knot,
then the calculated parameters of the branches may be too large. In
other words, this is a pessimistic estimation of the parameters. It
is hoped that this situation may be alleviated by careful layout or
by developing further procedures to recognize it and split the rec-
tangles to make it congruous to the calculation., Some of the pro-
cedures in the subprograms "exseventh2.p” and “exeighth2.p” perform

the above tasks.

4.4.]. Set up node numbers

Before reporting the calculated electrical parameters, we have
to first check them with the criteria in file "constant . h”., There
are a few cases to consider : (i) If both the capacitance and the
resistance values are larger than the criteria, “CLIMIT" and
"RLIMIT", all compoments of the T equivalent circuit are reported.
(ii) If only the resistance is smaller than "RLIMIT", then the node
numbers at the endports of this branch should be the same, and the
capacitance should be inserted between this node and the ground.
Furthermore, if the capacitance is also smaller tham “CLIMIT”, just

assign the two connecting endports with the same node number and

Fyes
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forget the T equivaslent circuit. (iii) If only the capacitance is
smaller than "CLINIT", no ceanter node is needed in T circuit, and the
two resistors are collapsed into one resistor comnecting the two

endports.

Since knots are considered as ports, node numbers are assigned
to knots slso. Generally, in determining the node numbers at the end
of resistors, first check the connecting ports. If node numbers have
been assigned to the connecting endports, then the resistor will use
those node numbers at its ends. Otherwise, new node numbers are gen-
erated. The center nodes where capacitors are comnected to ground

sre numbered as 5xx, 30 that they can be easily recognized.

4.4.8. Compute coupling capagitances

In the computation meantioned above, only the self-capacitances
of the intercomnects are considered. To further compute the coupling
capacitances, the proximity of the "wires” has to be checked. First,
the bounds of the wires are compared pasirwise, If they are discon-
nected by a margin larger than "WIREGAP” specified in the file
"constant.h”, then no further comparison will be made to avoid possi-
ble confusions., Otherwise, the branches in both wires have to be
compared pairwise. In this check, another parameter "BRANCHGAP" in
the "constant.h” file is used to test.the separation of the branches,
Only when the separation between two interconnects is smaller than
this parsmeter is the coupling capscitance between them computed by
the approximate formula in Chapter 3. Since there are guite a few

different scenarios of two close interconmects, e.g., they can be
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parallel on the same level or on different levels, or a metal linme
can cross over a polysilicon line perpendicularly, etc., every case
of two close branches has to be consid?red individually. Also these
scenarios may be dependent upon the technc’ogy employed and the
parameters of the fabrication processes, In the present version of
the extractor, silicon NMOS technology is assumed and only parallel
lines on the same level and the perpendicular cross—over are con-
sidered in the coupling calculatiom. In Fig. 4.4, an example of two
parallel interconnects is shown. Note that the capacitance computed
by Eq. (3.12) is capacitance per—unit—-length; thus, it must be mul-
tiplied by  the total 1length in question. In the case shown in
Fig. 4.4, the length used in the computation is 1,+],, This
apparently is less than the actual length because of the omission of
the turn, The T equivalent circuits for these two intercomnects are
also shown in Fig. 4.4. One of the advantages of using the T circuit
is that the coupling capacitances can be ecasily inserted between the
center nodes of the two T circuits of the adjacent interconmects,
The procedures "sortwire” and “comparewire” in the subprogram
"exninth2.p” perform the above functions. It should also be men-
tioned that the self-capacitances of an interconnect will be reduced
slightly due to amother interconnect in the vicinity as discussed in
Sec. 3.3.1. However, this effect is not takem into account in the

computation of the self-capacitances in this extractor.
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Figure 4.4 Consideration for the evaluation of coupling capaci-
tance between two parallel interconnects.
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4.4.9. Report

Basically, The extractor gemerates two output files. One is the
log file and the other is the SPICE file. The log file records warn-
ing and error messages and all the steps taken in the extractiom pro-
cess along with the time and date for reference. The original CIF
input tile and some data structures like wires and transistors are
also included for debugging. It is defaulted to "list.out” or
another name given by the user. A detailed explanation of the nusage
and commands of the extractor can be found in the procedure header of wr

"gotcmdlnargs” in the subprogram "exsecond.p”.

Another file is the SPICE file which includes all the parameters
of the transistors and the interconnect resistances and capacitances.
The tormat on this file is compatible with the SPICE input format.

The node numbers are set in the extraction process and cannot be set

-

externally. This may need to change in the future version so that .
the user can set the crucial node number to his choice to improve the -
readability of the output. This file is defaulted to the user’s ter— '
minal, if not otherwise redirected or remamed. A few examples will Ao
be discussed in the next section and some SPICE files are shown
there,
4.3. Ezamples and Results )

In this section, a few examples to illustrate the network Z: ;

extractor are presented. The c¢ircuit layouts are drawn manually

employing the design rules comformable to those in [38]. After -
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supplemented with some model cards and input output specifications,
the extracted outputs of the circuits are fed into SPICE, and the

simulated circuit responses are compared.

4.3.1. Exzample I : Static RAM cell

In Fig. 4.5, the layout of a six—transistor static RAM cell is
shown., After extraction by the network extractor, the output SPICE
file is given in Table 4.1. “C000”, "r000” and "rr000” are the three
components in a T equivalent circuit for am interconnect. "R0O00” and
"rr000” have the same value of resistance. The center node of the T
circuit where the capacitors are connected to the ground is anumbered
from 500. The capacitance “c003” is the only coupling capacitance
between the interconnects of nodes 7,10 and nodes 6,11. That is, the
coupling capacitance of the metal and polysilicon cross—over at the

center of the layout.

A schematic circuit diagram of the circuit is also shown in
Fig. 4.6. Note that the negative node numbers on “mot000” and
"mot002" are due to the dangling nodes comnected to the bit line and
the word line on the pass transistors at both ends, Those negative
nodes are helpful in locating not only the input and output nodes,
but also the erromeous disconnected nodes. It should also be men-
tioned that, in the extraction process, the parameters "RLIMIT* and
"CLIMIT” in the file "constant.h” are specified as zero, so all of
the resistances and capacitances of the interconnects are computed

and listed in Table 4.1.
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L, yoTleLr

TABLE 4.1 SPICE Output Listing for SRAM Cell,

500 O
8 500
500 9
01 O
10 501
so1 7
502 O
11 §02
502 6
501 50

2
6
7
8
10
9
1

NN AI W

1

0.0110pf
2.9e+02
2.9e+02
0.0041pf
1.1e+02
1.1¢+02
0.0077pt
7.5¢+01
7.5¢+01

0.0020pf

O RO KIN
CO0OO0COO0O

load
load
pass
drive
pass
drive

1=
1=
1=
1=
1=
1=

9.00un
9.00um
2.00unm
2.00un
2.00un
2.00um

111

2.67um
2.67um
2.00um
8.00um
2.00um
8.00um

.
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Figure 4.6 Schematic diagram of SRAM cell.
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ar 4.5.2. Exsmple II : Full Adder Circuit I
) e The schematic circuit disgram of "Full Adder Circuit I” is shown
'- e in Fig. 4.7. With the same specifications in the "comstant.h” file
.j" = as in the previous example, we can extract the SPICE file from the
extractor. Combined with some model cards, input and output specifi-
™ cations, and a few modifications to the circuit, a few silmluions.
‘, f:j of the circuit are performed. In order to distinguish the effects of
--_r | the interconnect parameters, three cases are considered, namely : (i)
:::' h the circuit without taking into account the interconnect parameters;
:’;x (ii) the circuit with only the self-capacitance and the resistance of
:: the interconmnects; (iii) the circuit with all intercomnect parame-
-
': ters including the coupling capacitances, These three simmlated
- responses of "Full Adder Circuit I” are shown in Fig. 4.8 to
; Fig. 4.10. The full SPICE deck for case (iii) is givem in
\‘ rn Appendix E. It should be pointed out that all eight possible combi-
?, . nations of the three inputs to the full adder are covered in the
‘\ simulations, and only the first input waveform is shown in the
.. :_ graphs., The other two imput waveforms are not plotted for the sake
of neatness of the graph.
S
:‘ ‘ In comparing Fig. 4.9 with Fig. 4.8, it is obvious that the rise
_;! “ and the fall times inm Fig. 4.9 are larger than those in Fig. 4.8.
‘::;I o This is naturally due to the RC time delay contributed by the inter—
S}l o connects in the circuits, It should be mentioned that the time
@ &
- * These simulations are actunally done by SLATE [48,49] which has a
" “ similar format as SPICE and does a better job at transieant analysis.
by o
.-1'1 -
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Figure 4.7 Schematic diagram of Full Adder I.
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delays shown in Fig. 4.8 may be attributed to the capacitive loads of
0.1 pF at both output ports. Furthermore, these loads are used
throunghout all the circuits discussed in these two examples of full

adder circuits.

The circuit response of the third case which also includes the
coupling capacitances are shown in Fig. 4.10. They differ little
from the responses shown in Fig. 4.9. On close examination, there
may be just a little more delay. Overall, it can be said that the
coupling capacitances for this circuit do not influemnce the circuit
responses much. However, the inclusion of the self-capacitances and
the resistances has more visible effects on the responses, and they

should be considered in the circuit simulation.

4.5.3. Example III : Full Adder Circuit II

Another full addexr circuit is used as an example. Its schematic
is shown in Fig. 4.11. There is & basic design difference from the
previous full adder circuit. In this case, more pass transistors are
used.‘ Noticeably, they are used at the output ports; thus, the out-
put responses of this circuit camnot reach the full § volts of VDD,
At most, the logic "1 for the outputs can reach 5 volts minus the
threshold voltages of the pass transistors which are set at 1 volt.
This point is manifested in the following graphs, Those three cases
mentioned in the previous example are also considered here. In
Fig. 4.12, the responses of "Full Adder Circuit II" without the
interconnect parameters are shown. Figure 4.13 is for the case of

taking the self-capacitances and the resistances into account.
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Finally, in Fig. 4.14 the responses with all the interconnect param
eters included are considered. The "constant.h” file, the model
cards, and the 1load capacitances are chosen the same as in
Example I1I; the 1listing of the SPICE input deck is given in

Appendix F.

In comparing the responses. for these three cases, it is obvious
that the coupling capacitances in this circuit have greatly affected
the output responses, Especially, the waveforms in Fig. 4.14 differ
drastically from those in Fig. 4.12 and Fig. 4.13. Not only are the
rise— and the fall-time delays of the responses larger than those in
Fig. 4.13 and PFig. 4.12, but also there is a notch developed in the
sum waveform, This may result in uanwanted errors or hazards for the
circuit, Hence, the circuit or the layout of the circuit should be
examined more, or redesigned, to correct this possible flaw, In
design verification, it is our aim to discover and eliminate those
possible errors. On the other hand, the responses in Fig. 4.13 with
only the self-capacitances considered differ from those in Fig. 4.12
by larger rise— and fall—-time delays as the case in the previous

example.

To sum up, it can be concluded that the coupling capacitances of
the interconnects are important in the circuit simulation in this
example. However, in the previous example, they had an insignificant
effect on the circuit responses, Consequently, coupling capacitance

effects depend heavily on the mask layout and the circuit itself.

®* These simulations are also done by SLATE.
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Their effects on the circuit have to be investigated individually.
As to the self-capacitances and the resistances of the interconnects,
they surely coantribute to the time delay of the circuit and should be

considered.

4.6. Computational Complexity of the Extractor

Because of the increased circuit complexity and myriads of data
involved in VLSI circuits, it is essential that the CAD tools comsist
of computationally efficient algorithms, The insertion algorithm of
the 4—-d binary search tree with right thread, which is the basic data
structure of the extractor, is given partly in [26] and 1listed as

follows :

Given a node P to be inserted into the tree.

I1. [Check for empty tree] If ROOT = gil, then ROOT (- P,
RSON(P) ¢- nil, LSON(P) <- nil, set RSON(P) as a thread,
return; otherwise, Q <~ ROOT.

I2. [Comparison] If Ki(p) =K. (@, 0 i {3, and
i is the discriminator, then return; otherwise, set SON(Q).
(RSON or LSON depending on the comparison of Key(P) and
Key(Q)). If SON(Q) = nil, them goto I4.

I3. [Move down the tree] Set Q <~ SON(Q), goto I2.

I4. [Insert new node in tree] Set SON(Q) <~ P, RSON (P) <- nil,
LSON(P) <- nil, return,

A detailed discussion of the complexity of the above algorithm was
given in [26], and it was concluded that typical insertions and
record look-ups in a 4-d tree will examine approximately 1.38610g,n

nodes, where n is the size of the tree. In the extractor, this

sl
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A d insertion algorithm is called to set up a 4-d binary search tree for R
ﬁ; . roctangles om each mask. It is also set up for the diffusion and #
N o polysilicon overlap rectangles. ]
. 1

Next in search of the diffusion and polysilicon overlap regions,

xj: . & search algorithm is needed. For example, given a polysilicon rec-

a a8

tangle P with its four keys, we have to find all the diffusion rec~

{j x tangles Q which are overlapped with P. In other words, the keys of P
“ RN
LS
t; and Q have to satisfy all the following conditions simultaneously :
\y 'd ’
. K, (Q) ¢ -K,(P)
S K, (Q) ¢ -K,(P)
S K,(Q) ¢ -K4(P)
C I
Lo
o -
Ry This search is classified as "Intersection Queries” in [26,30]. The

search algorithm can be described as follows :

Given s rectangle P, try to find all the overlapping rectangles Q's

22 f o= o 8

:: ' in the tree rooted by ROOT.

Noo I1. [Initialization] Q <~ ROOT. I
N ' :
< -, I2. [Move to leftmost cormer] While LSON(Q) # nil do :
%; e Q (- LSON(Q) and INCREMENT(i), i is the discriminator. N
o - :
A I3. [Check intersection] If K.(@) ¢ - K ., (P),

':i K 0 {j €3, thean report Q, dontinue 11% 2)mod4

Sﬁ I4., [Go to predecessor] If K.(Q) » - K (P) or

ST RSON(Q) is s thread, then'set Q <- PREPEPESSSR(Q) .

g 4 If Q = nil, then return; otherwise goto 12, '

LN

P R D B I VY

- The above algorithm is similar to that described in [27]; basically,

2 v

2 fula
.._<.«ln
s § )
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it is an “"inorder” traverse of the binary search tree. The main
advantage that this data structure offers in saving traverse time is
due to the check on step I4. If the conmditiom Ki(q) > -K(i+2)nod4(P)
is satisfied, then the right subtree of Q need not be traverssd, and
the soarch can be directly positioned to the pted;cossOt of Q. Note
that only one condition is checked in this step, and i is the
discriminator. Instead, all four keys have to be examined in step
I3. Moreover, the precedure to find the predecessor can be accom—
plished rather easily with the help of the right threads woven in the o
tree instead of employing a stack register to store the nodes on the
way down the tree as suggested in [27]., Hence, this is another sav-
ing in the search time. However, due to this step in the search Aé
algorithm and the random nature of the tree, it is difficult to

evaluate the computational complexity for this algorithm, Some

empirical data had been collected to test the complexity as discussed -

in [27]. It may be inferred that the search algorithm of the 4-d

binary tree is rather efficient.

Other possible expensive algorithms in the extractor may be
those for establishing the interconnect data structure wire and find-
ing the coupling capscitances. Because the tramsistors are stored in
linear arrays, a search through the whole arrays has to be done for

each intercomnect rectangle to check if it is connected to the

AN
s e e

transistor ports. Also, the algorithm of finding the coupling capa- N
r

.
SN *.. ‘:.ﬂ‘_' J _'... .. e

citances is done by first comparing the wires pairwise, though "wire-

.._‘. "‘- 1
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bounds” are used first to screen off far—away candidates; then, all }~
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the branches inside the wires are compared pairwise. Both of these
algorithms are approximately nz processes, and they can be computa-
tionally intemsive. Thus, they are in want of some improvements in

the future versions.

In order to experimentally estimate the computational complexity
of the extractor, a few cases of a chain of "Full Adder Circuit II”,
presented in the previous section, are tested. The number of
transistors in the circuit is used as a measure of the complexity of
the circuit. The results are given in Table 4.1. An empirical rela-
tion between the number of transistors (N) and CPU time (T) can be
assumed as : T = aN®. From the data in Table 4.1, the exponent § can
be estimated to be in the range of 1.3 to 1.7. Therefore, the compu-
tational complexity of the extractor is proportiomal to O(Nx") to

1.7

O(N ), where N is the total number of transistors. This is

TABLE 4.1 CPU Time Consumption of the Extractor.

no, of transistor (N) CPU Time (T) in sec

21* 13.3
42 33
63 58.1

84 84
105 122.4
168 264

336 851.2

® One "Full Adder Circuit II” contains 21 transistors.
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comparable to some other extractors, e.g., the extractor discussed in

(28] has complexity of o(N***).

In summary, from the oexamples shown in this chapter, it can be
concluded that the inclusion of imtercomnect parameters in the cir-
cuit sismmlation is important. One can discover possible timing
errors in the design or the layout. In order to handle more complex
circuitry, the algorithms employed in the extractor need to be effi-

cient, and hierarchy should be built into the program,
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i CHAPTER §

e

N CONCLUSION

=

ﬁj The complexity of VLSI circuits has necessitated the development
’ of more comprehensive CAD systems. One of the problems addressed in
-\'.
- this thesis is concerned with the intercommection circuit. It is
- essential to take into account the electrical parameters of the
- interconnects in the more complicated VLSI circuits as they gradually
i' become the dominating factors. Furthermore, it should also be "com—
. putationally feasible” to extract this information from the layout in

the design verification. Hence, there are basically two pazrts ia
this thesis, The first part is concermed with the accurate computa-—

tion of the interconnect capacitances with numerical methods, more

ES specifically, the integral method was employed here. Then simple

. formulas for the intercomnect capacitances are developed in the

= thesis with a view to easily incorporate them into an extractor.

;; The second part of the thesis deals with the extraction of intercon-

’ nect parameters, anﬁ a network extractor was developed for it.

é; In Chapter 2 a detailed formulation of the integral method was
i; ;E given. It encompasses the derivation of the Greea’'s functioms in
;ﬂ - homogeneous, two layers and three layers of media; the even—odd mode
;ﬁ 53 analysis for multi-conductor; and the use of the "method of moments”

to solve the integral equation, Pulse~type functions were used for

both the basis functions and the testing functions for the sake of
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closed—-form evaluation of kernel matrix elements. This method is
integrated into two FORTRAN programs "CAP2D" and "CAP3D”. All the
self capacitances with respect to the ground of every intercomnect in
question and all the coupling capacitances between intercomnects can
be evaluated up to three layers of media and at most ten intercon-
nects. For the two—dimensional case, slant side walls of the inter—
connects were also considered. As the examples in Chapter 2 and
Appendix B show, a variety of interconnect capacitaices can be
ovalusted by these programs, and they are reasonably etficient and -
versatile, However, in three layers of media, the Green’'s function

has become quite complicated and the computation may be intenmsive.

If detailed capacitance informatiom is needed for irregularly shaped -}
§ﬂ§ boundaries, the integral methkod may not be suitable,
Qﬁ As for the simple formulas, the "cylindrical approximation for-

mula” was derived in Chapter 3 for the self-capacitance. It is based
on the known formula of the capscitance of a cylinder above a ground
-, plane. As shown in Chapter 3, it compares favorably with other sim—

ple formulas and is reasonably accurate with respect to the numerical

P

- results. Then & "least square fit” method was employed to find sim

4

,
Z
2t

ple formulas for the coupling capacitances between two parallel

]
-
[

st

AT interconnects or two intercomnects on different levels which cross ~
Ei; over each other. These prove to be useful in the network extractor. ™
535 As the intercommect structure becomes more complicated, simpler for- .
{f mulas may be necessary to include all the capacitances in the extrac-

s tion.
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':u E Fipally, a detailed description of the network extractor was
LLE - given in Chapter 4., It 1is a rectangle—-based, Manhattan—geometry—

only, NMOS extractor. It reads in CIF input of the layout informa-

F: tion, then puts out circuit compoments in SPICE compatible form. The
) SPICE output file includes transistors and their parameters, e.g.,
;§ channel width and channel length and the resistance and capacitance
of the T-equivalent lumped circuit of the intercoanect. A few exam
ples were given in Chapter 4, along with some circuit simmlations.
:; From these examples, it is apparent that the intercomnect parameters
certainly play an important role ian the circuit simulation. Although
N
:; the original design did not emphasize the efficiency of the extrac-
i; tor, it was found out by experiment that the computational complexity
! .
N of the extractor is approximately proportional to O(Nx"). where N is
;? the number of transistors in the circuit. However, due to simplifi-
~ cation of the transistor extraction, only a limited repertoire of
- transistor configurations is recognized in the extractor. Also, some
e redundancy in the data structure and possible inefficiencies in the
N algorithms may need further improvements. In all, it fulfills the
:7 need to have the intercomnect parameters extracted and utilizes the
", simple formulas derived in Chapter 3. Besides increasing the reper-
;' toire of tramnsistor coufigurations recognizable to the extractor and
ZE‘ improving some of the algorithms and data structures in the program,
| it is also necessary to link the extractor hierarchically with other
:: CAD tools to handle larger circuits,
A

a
.
» &

.:. Q.:.‘...\.: - :_. \': “:.n' - \-.m'.:_v\: AP




b - -

R;C 140

Vﬁg

{1 | APPENDIX A

-

o THE VALIDITY OF THE LUMPED CIRCUIT MODEL

A.1. Introduction

The lumped circuit model for the intercomnect is employed in
this thesis. A discussion is presented here to establish the vali~

dity of this approach through the transmission line theory.

A.2. Formulation

Consider a transmission line circuit and its T-equivalent cizr-
canit shown in Fig. A.l1 and Fig. A.2. The length of the line is "1”
and "I‘" and "Zl" are the current source and the line load, respec-

tively. The characteristic impedance and the propagation coastant

are

, 1/3
Z, = [(R+jul)/(G+jwC)]

v = [(R+jul) . (G+ju0)]"/?

where R, L, G, C are the resistance, inductance, conductance and
capacitance per unit length of the line. From the transmission line
theory, the input impedance Z  and the voltage response at the load

ead of the line V, can be expressed as [46]

AR ) Ry \ Te as Tt ey el e e e T T . ..‘.“-'.
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! Z,cosh(yl) + Zesinh(yl)
o Z, =2, (A.1)

.--'.." lein.h(rl) + Zpcosh(yl)

1.2,Z

. v, = s 1 (A.2)
[;-;Z‘_ leinh(yl) + Zocosh{yl)
These two parameters define the characteristics of the tramsmission
line, and they will be compared with those of the "equivalent” lumped
n circuit model.
:{- Next consider the T—-equivalent lumped circuit in Fig. A.2. All
R
i the parameters are defined the same as those in Fig. A.1. Then the

input impedance Z_ and the voltage response Vi of this lumped circuit
::}l can be oasily obtained as

Z,(140.57"17) + Z,(y1+0.25¢"1")

e z, =z, — (A.3)
e Z,(1+0.5vy 1) + Z, (1)

12,2
5 v - s 1 (A.4)
Z,(140.5y 1) + Z;(y1)
'_:E:j: In order to show that the lumped circuit in Fig. A.2 is an
. Yequivalent” circuit to the transmission line circumit in Fig. A.1,

the input impedance and the voltage response should be correspond-

ingly equal. In other words, Eq. (A.3) should be equal to to
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Eq. (A.1) and Eq. (A.4) to Eq. (A.2), Note that if the hyperbolic
functions, sinh and cosh, in Eq. (A.1) and Eq. (A.2) are expanded in

a Taylor series, the first-order approximations are :

It

sinh(yl) 1l + ...

3 3
cosh(yl) = 1.0 + 0.5y 1 + ....,

Furthermore, if the above approximations are substituted into
Eq. (A.1) and Eq. (A.2), Eq. (A.3) and Eq. (A.4) are obtained except
for the term 0.257'1’ in Eq. (A.3). Therefore, it may be concluded
that the equivalent lumped circuit is valid, as long as the parameter

vl is small enough.

A.3. Discussion

A.3.1. Lossless transmission line First, let us consider a loss-
less transmission line. In this case, the resistance and the conduc-
tance of the line are relatively small, i.e., R <C wL, and G << wC.

Then the propagation constant becomes

2n

Yy=jp =3
A

where A is the wavelength of the propagating wave on the transmission
line. In order to satisfy the criteriom arrived eazlier, i.e., the
factor vyl = j2nl/A must be small, the length of the line "1"” should
be small compared with the wavelength on the line A, This is the

asual criterion for the validity of the lumped circuit model.
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RC lossy line

Next, consider a lossy line with negligible inductance and con-
ductance, i.e., R >> oL, and G <{ wC., In this case the propagation

constant becomes

wRC

1/3

Y = (1+j) ( )

2
To keep Yyl small as discussed before, the factor (uRC)t/’l should be

kept small too. In order words, quCI3 should be small. The term

RClz, as a whole, can be considered as the "time delay” of the il
transmission 1line, and the factor 1‘ is due to the per unnit length
basis of the resistance and the capacitance. If T is the period of
the propagating wave, and o = 2xn/T, then wRC1® = ZR(RCI’/T). The
criterion for the validity of the lumped ciicuit. i.e., small yl, can
be interpreted in this case as implying that the delay of the line
should be small compared with the period of the wave, For a typical
example [47], a doped polysilicon line with 30Q/square and 1 c¢m long
has a time delay in the order of 10-1sec. This corresponds to a pro-
pagating wave on the line of frequency about 10 MHz. This is usually B !
unacceptable for the typical circuit employing silicon technology.
Therefore, long 1lines usually lie on the metal level, For the case
of large R or C of the line, multiple sections of a lumped circuit

can be used to approximate the transmission line. In summary, for RC | i

lossy lines, the criterion for the velidity of the lumped circuit is
that the RC time delay of the line be small relative to the period of

the corresponding frequency of the line.
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APPENDIX B

CAP USER’'S MANUAL

1
iy

Introduction

"CAP2D” and "CAP3D" are two FORTRAN programs for two-dimensional
and three—dimensional capacitance computations. A detailed descrip-
tion of their usage and output format is given; some examples are

also given at the end.

B.2. Description

The numerical computation of caéacitanco of these two programs
is based on the integral method which is essentially the Green’s
function approach combined with the nbnent method. Pulse-type basis
functions over subdivisions on the conductor’s surface are assumed,
and the testing functions are chosen the same as the basis functions.
The subdivisions can be chosen to be variasble~length or constant-
length, If variable—length subdivisions are chosen, by defaumlt, they
are divided according to the roots of the Chebyshev polynomials.
Since subdivisions with variable length usually yield more accurate
results for the same number of subdivisions, the constant case is

basically included for comparison purposes,.

Both programs have the capability to handle up to 10 traces (or

conductors) in at most 3 layers of different media. In the two-

L e e A e A e et A BRI DR e R L P T ICSL TS IO U PO SRR
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(‘. dimensional case, "CAP2D” is also capable of taking into account the
- pitch angle of the slant side walls, assuming that the traces are
jﬁ left and right symmetric. However, "CAP3D” for the three~dimensional
f} case deals with vertical side walls only. In the case of multiple
.;‘ layers, i.e., two layers or three layers of media, an infinite summa-
'2{ tion is involved in the Green's function and a cut-off criterion
n should be chosen.
7
o
o B.2.1. Usage
e The programs are designed to be run interactively, Alterna-
tively, the UNIX system also provides a way to run it through an
;ﬂ- input file and redirect ("<(") command. The following parameters will
R be prompted in running the programs.
;7 (1) “oumber of traces” and "number of layers” : they are self-
’;: explanatory.
;ﬂ (2) "want kernel matrix ?" and "want grids ?" : If ”"y* is chosen,
-
- the kernel matrix elements and the coordinates of all the subdi-
o visions will be listed in the output file. These are basically
:tf intended for debugging purposes, Usually "n” should be the
-:j answer to both requests,
L

(3) "wx,nx” : These are the horizontal or x-direction width of the

trace and 1its correspounding number of subdivisions. Note that
21l the widths and lengths are stored in double precision vari-
ables, so "wx” should be in double precision form, This also

applies to all the other widths in the program,
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(4) "wy,ny”,"wz,nz” : These parameters are similar to the previous
ones, except they are in vertical or y direction. "wz,nz” oaly

{3 a appears in the three—dimensional case.

_‘\_,«'
)
-

(5) “ang” : This is the pitch angle for the slant side walls. It
only occurs in the two—dimensional case. The angle should be in

degrees, and within the range of 0° to 90°.

(6) 7”subdiv method” : This concerns the choice of coastant- or
}f; . variable—length subdivisions, A "0" means constant subdivisions
and any other integer will result in default Chebyshev variable

subdivisions,

(7) “"orientation” : This omly occurs in ruanimg "CAP3D”. It speci-
5o fies the direction of the trace. For example, a trace which is
parallel to the x-axis has an orientation 1. By the same token,

the orientation is 2 if it is parallel to the y—axis., However,

' Rk
R orientation 3 is prohibited. It should be pointed out that the
-;;f g charges on the cross sections perpendicular to the orieatation
3;3 axis of the trace are neglected, i.e., charges at each eand of
}f: . the line are not computed.
j:% . (8) ®lolx,loly” : In "CAP2D", the coordinates of the lower left
o: corner of the trace are needed.

(9) ®cx,cy,cz” : On the other hand, the coordinates of the ceater of
g the trace are used in "CAP3D”.
@) »
X Note that the above parameters from (3) to (9) have to be fur-
.31 -i nished for every trace in question.
RO
.
e W -
°:
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(11)

(12)
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"enl,en2” : These are for the dielectric constants of the media.
Because the outmost layer in the three—layer case is assumed to
be free space, at most two different dielectric constants need
to be specified. It is important to note that the permittivity
of the free space (8.854:10-1‘ F/cm) is not built into the pro-
grams., Thus, usually the output capacitance values are normal-
ized by this factor., If capacitance values in Farad or F/cm,
depending on three— or two-dimensional problem, are desired,
then the permittivity of the free space should be included in

the dielectric constants,

”a,b,k” : These are the heights of the dielectric layers. They
should be double precision numbers. "a" and "b" are for the
case of three layers of media, and it is assumed that b ) a.
"H" is the height of the lower dielectric layer in the two—layer

case,

"errbnd” : This is the cut-off criterion for the infinite summa-
tion in the two—layer or three—layer Greea's functioms, 1.d-3
is recommended in the program. Yet, bear in mind that a small
P"errdbnd” will reunder more computations, consume more CPU time,
and result in more accurate answers, This trade—off between
accurscy and computation is also observed in the case of the

choice of the nunb;t of subdivisions for the traces.

PRI A WP Ay SRS N




P e b e B

.

»
a ¢ 3

............................

149

B.2.2. Output

The result of the capacitance computation will be, by default,
stacked in files "fort.7” for "CAP2D" and "fort.9" for "CAP3D", 1If
these tiles already exist in the directory, the curreant output will
be appended to the corresponding files. The report includes all the
pertinent input parameters for the traces and the media, Further-

more, the following parameters are also included :

"Number of kernels” indicat:s the onumber of elements in the
upper triangular part of the kernel matrix including diagonals., If
the total number of subdivisions is n, then the "number of kernels”
will be n*(n+1)/2. Note also that the kernel matrix will be 1listed

in "packed symmetric” form if it is requested. In essence, the upper

- triangular and the diagonal elements are listed limearly. For exam—

ple, the (i,j)th element (i ¢ j) in the kernel matrix will be the

[j®*(j=1)/2+ilth element in the liaear list.

"Iterm” indicates the maximum number of terms takem in the com—
putation of multi~layer kermels, It is dependent omn the cut—off cri-
terion "errbnd” as Adiscnssed previously. And it is 0 for the
single—layer case. Since the do loop index for the three—layer case
is set at 12, it has not neccessarily coaverged if "iterm” equals 13,
If divergence is encouantered in the summation process, i.,e., the
absolute value of the term in the infinite summation is larger than
its predecessor, "nu. of divgnt” will be incremeated, and the summa-
tion will be terminated. Since this divergence usunally occurs at

terms with small magnitude (=~1.d-2), the current sum can still be &
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reasonable value for the kernel element, and the computation of other

kernel elements will continue.

The parameters "rcond” and "info” are indicators from the "lin-
pack” programs “dppco” and "dppsl” which are utilized to solve the
positive definite kernel matrix. If "info” is other than O, the
solution is erromeous. It indicates the order of the primcipal sub-
matrix which is not positive definite. Usually the subdivision at
fault can be detected this way. "Rcond” is the reciprocal of the
condition number of the kernel matrix. Only when it is in the order
of the .machine epsilon (about 1.d-14 for double precision on VAX
11/780), then is the linear system ill-behaved and the solution may

be erromeocus. Usually this nuomber is within 0.1 and 1.d4-5.

The solution vector included in the report represents the even-

mode charges on the subdivisions, i.e., the charge distribution when

all the traces are at a constant positive potential with respect to

the ground plane. It delineates the charge distribution in the sys-—

P S I SR PR

tem and is helpful in gaining a physical understanding of the sys-

tem, Also it serves as a good gauge for debugging.

All the self capacitances, C__, and the coupling capacitances,

on
Cn-. ném are reported. Note that the accuracy of the computed

capacitances depends on the cutoff criterion "errbnd”, the number of

subdivisions and the subdivision method. Also it has been shown in

the literature that the integral method will slways result in a lower =
bound for the true capacitance value, and the true valune is also

variationally stationary for the first order perturbation. Thus,
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more subdivisions and a tighter "errbnd” will yield larger capaci-
taace values. This characteristic is also very helpful for debug-
ging, and for the estimation of the true value. Gemerally in order
to ensure the accuracy of the caracitances, the same case can be run

with successively more subdivisions on the dimensions of the traces.

Finally, the time usage shows the consumption of CPU time for
various computatioas. *Kernel set up time” is the time to compute
the kernel elements. It usually takes up the lion’s share of the
total wuser time. Since the "number of kernels” is the total number
of elements computed, it 13 directly responsible for the “kernel
setup time”, "Kernel solve time” is the time spent by "dppco” and
"dppsl” to solve the corresponding positive definite kernel matrix.
"Capacitance time” is the time spent to obtain the various self and
coupling capacitances from the solution vectors (i.e., charge distri-
butions) of even-mode and odd-mode excitations. This time is usually

the smallest and is negligible for single traces.

B.3. Eiles

The FORTRAN source files are : ®cap3d.f”, "subp3do.f”,
"subp3dl.f”, "subp3d2.f”, "subp3d3.f” for the three—dimensional case.
The main program is in “cap3d.f", all the others are subprograms.
"subp3dl.f” coatains the subprograms for the homogeneous case,

"subp3d2.f” for the two—layer case and so on. The "make” file for
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"cap3d.ex® is as follows :
4 ‘
. # make file tor cap3d.f

# -
FFLAGS = -3 -u i
cap3d.ex : cap3d.o subp3d0.o subp3dl.o subp3d2.o0 subp3d3.o

comptime.o
£77 -g cap3d.o subp3d0.o subp3dl.o subp3d2.0 subp3d3.o
comptime.o —0 cap3d.ex -1llinpk

”"Cap2d.ex” has a similar "make” file and “"source” file structure,
with names changed to 2d, accordingly. The object code "comptime.o”
is the "object” file of the two C procedures which are utilized for
the time usage calculation, “-1linpk” indicates that "linpack” is to
be loaded, and this flag has to be the last flag in the command, -
Finally, the output will be in "fort.7" for "cap2d.ex” and "fort.9”

for "csp3d.ex”.

B.4. V¥arnings

The calculation of capacitances in three—layer cases is very
computationally intemsive, due to the infinite summation and the dou-
ble summation inside. A few hundreds of seconds of CPU time om the
UNIX system is not uncommon for & single trace (see example IV). So

rua this case cautiously and prudently. -

B.3. Examples

In the following are some examples of intercoanect systems. The
configurastions of interconnects are presented in graphs, and the

interactive sessions of running the programs and the results from the
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usage of both programs in more detail.

B.5.1. Example 1

Following is the interactive session of rumning the
program "cap3d” for the traces in Fig. B.1.

%
% cap3d.ex

number of traces
number of layers
want kernel matrix ('y’ or 'm') ? ’‘n’
want grids ('y’ or ’an’) ? ’'n’

trace no. 1
orientation
subdivision
X width and
y width and
z width aad
position of

atrc = 2
nlay = 1

(x=1,y=2) = 1
(const=0, Cheby=other) = 1
no. of div.

no. of
no. of

center

trace no. 2 :

orientation
subdivision
x width and
y width and
Z width and
position of

(x=1,y=2) = 2

div.
div,

: ¢x,cy,cz = 0,40 0.d40 1,140

wx,nx = 6,5d0 4
wy,ay = 1.340 3
wz,nz = 1,240 3

(const=0, Cheby=other) = 1
wx,nx = 1,840 3
wy,ay = 9.d0 4
wz,nz = 1,7d0 3

no., of
no. of
no. of

center :

dielectric const.
STI0P in tort.9 statement executed

div.
div.
div,

: enl = 4.40

END of the interactive session.

The output from the above session is as follows :

$8s9s three—dimensional,
subdivisions :

44
.18

trace no,

2.81
.85

(z, y a
2.81
.18

1-1syer,
nd z)
.44

2-trace *%%%s Apr 1 83 00:17:29

.19

1 with wx = 6.50 nx = 4

wz = 1,20 nz = 3

orientation

subdivisions :

.26

1.27

center at :

(x, y and z)

.26

.60

i 1 subdiv. method :

3.90

1

cx,cy,cz = 0.d0 0.40 3.35d40

.92

000

.19
wy = 1.30 ny =
.000 1.100

3.90

.60

Hopefully, these examples will illustrate the

3

1
<
1
1
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.25 1.20 .25
trace no. 2 with wx = 1,80 anx = 3 wy = 9,00 ny = 4
wz = 1,70 nz = 3 center at : .000 .000 3.350
orieatation : 2 subdiv. method : 1

1-layer with diel. const. enl = 4,00

total no. of subsections : 96 no, of kernels : 4656
iterm = 0 no. of divgnt : 0
areas :

.08 .54 .54 .08 40 2,59 2.59 .40 .08 .54
.54 .08 .08 .54 .54 .08 40 2,59 2.59 .40
.08 .54 .54 .08 .08 .49 .49 .08 37 2,39
2.39 37 .08 .49 .49 .08 .08 .49 .49 .08
37  2.39  2.39 .37 .08 .49 .49 .08 .16 .77
.16 1.03 4,96 1,03 1.03 4.96 1.03 .16 .77 .16
.16 .17 16 1.03 4,96 1,03 1.03 4.96 1.03 .16
17 .16 .15 .97 .97 .15 72 4,68 4.68 72
.15 97 97 .15 .15 .97 .97 .15 .72 4,68
4.68 .72 A5 - .97 97 .15

rcond = .210494530-01 info = 0

solution(even)
1.447 6.351 6.351 1.447 5.809 20.83
20.83 5.809 1.447 6.351 6.351 1.447
.7007 .6746 .6746 .7007 2.876 .6321
.6321 2.876 .7007 .6746 .6746 .7007
1.210 4.889 4,889 1.210 3.374 6.229
6.229 3.374 .6668 .8890 .8890 .6668
1.210 4,389 4.889 1.210 3.374 6.229
6.229 3.374 .6668 .3890 .3890 .6668
1.277 5.118 1.277 2.299 5.510 2,299
2.299 5.510 2.299 1.277 5.118 1.277
1.016 4.028 1.016 2.639 6.598 2.639
2.639 6.598 2,639 1.016 4,028 1.016
1.196 2.281 2,281 1.196 4,189 6.039
6.039 4.189 .9724 2.594 2,594 .9724
1.19¢ 2.281 2.281 1.196 4,189 6.039
6.039 4.189 .9724 2.594 2.594 .9724

no, of traces : 2

cap( 1, 1) = 166.0239059 cap( 2, 2) = 140.5242337

cap( 1, 2) = 51.89136663

TIME USAGE : kernel setup time : 346.467
kernel solve time : 5.93333
capacitance time : .283333
total user time : 352.683
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8458580 end of report ssssse38ss Apr 1 83 00:27:43

B.5.2. Example 2

The interactive session and output of running "cap2d” for the
traces in Fig. B.2 :

%

% cap2d.ex
number of traces atrc < 4
number of layers nlay = 2

want kernel matrix ('y’ or ‘n’) ? 'an’

want grids ('y’ or 'an’) ? ’'n’

trace no, 1 :

horiz. width and no. of div. : wx,nx = 1,5d0 3
verti., width and no. of div. : wy,ny = .4440 3
position of low left cormer: lolx,loly = 2,40 .38d0
slant angle of the trace : ang (in deg) = 7.0d1
division method (const=0 Cheby=other) =1

trace no, 2 :

horiz. width and no. of div, : wx,nx = 1,5d0 3
verti. width and no. of div. : wy,ny = .4440 3
position of low left cormer: lolx,loly = 4.5d0 .3840
slant angle of the trace : ang (in deg) = 7.d1
division method (const=0 Cheby=other) = 1

trace no. 3 :

horiz, widch and no. of div., : wx,nx = 2,240 3
verti. width and no. of div. : wy,ay =1.7d0 3
position of low left cormer: lolx,loly = 0.40 2.37d0
slant angle of the trace : ang (inm deg) = 7.5d1
division method (const=0 Cheby=other) = 1

trace no. 4 :

horiz. width and no. of div., : wx,nx = 2,2d0 3
verti. width and no. of div. : wy,ny = 1.7d0 3
position of low left cormer: lolx,loly = 3.2d0 2.37d0
slant angle of the trace : ang (in deg) = 7.5d1
division method (const=0 Cheby=other) = 1

diel. const. of lower layer : enl = 4,40

diel. const. of higher layer: en2 = 7,540

interface position : h = 1,07d0

relative error bound : errband (1.d4-3) = 1.d-3
STOP in tort.7 statement executed

END of the interactive session.

#ssse%¢ two—dimensional, 2-layer, 4—trace ¢*ssssx Aprl1s5 83 01:56:11

trace no. 1 with wx = 1,50 nx = 3 wy = .44 ny = 3
position : 2.00 .38 slant angle (deg) : 70.00
subsections : .173 .834 173 .220 1.061 .220

b B s
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.069 331 .069

trace no. 2 with wx = 1,50 nx = 3 wy = .44 ny = 3
position : 4,50 .38 slant angle (deg) : 70.00
subsections : .173 .834 173 0220 1.061 .220
.069 331 069 e
trace no. 3 with wx = 2,20 ax = 3 wy=1,70 ay = 3
position : .00 2,37 slant angle (deg) : 75.00
subsections : .189 911 .189 .322 1.556 .322
.258 1,244 .258
trace no. 4 with wx = 2,20 px = 3 wy = 1.70 ay = 3
position : 3.20 2.37 slant angle (deg) : 75.00
subsections : .189 911 .189 .322 1.556 .322
.258 1.244 .258 -
2-layer with brdy h = 1,07 rel errbnd = ,100e-02
diel, const. enl(low) = 4.00 en2(top) = 7.50
total no. of subsections : 48 no. of kermels : 1176
iterm = 7 no. of divgat : 0
widths :
.22 1,06 .22 .17 .83 .17 .07 .33 .07 .07
.33 .07 .22  1.06 .22 .17 .83 .17 .07 .33
.07 .07 .33 .07 .32 1.56 .32 .19 .91 .19
.26 1.24 .26 .26 1.24 .26 .32 1.56 .32 .19
.91 .19 .26 1.24 .26 .26 1,24 .26 -
rcond = .24604396e-01 info = 0
solution(even)
2.952 11.14 2.911 2795 .3718 .1257
1.387 1.317 .2139 1.248 .9462 .1012
2.910 11.14 3.008 .1394 7297 .5101
1.249 .9512 .1137 1.441 1,565 .3493
1.759 2.804 1911 .6801 1.291 .3642
1.494 2,748 .7878 .9962e-01 .2684 .3656
.1260 .7004 .6998 .3601 1.254 .6398
«7113e-01 .3019 .3588 .8920 2,231 .7506 _
no,. of traces : 4
cap( 1, 1) = 23.02923288 cap( 2, 2) = 24,11008633
cap( 3, 3) = 12.85232106 cap( 4, 4) = [ .386332101
cap( 1, 2) = 1.766451058 cap( 1, 3) = 4,719475070
cap( 1, 4) = 4.522507157 cap( 2, 3) = .2622865412 .
cap( 2, 4) = 7.549320560 cap( 3, 4) = 15.43729017 e

TIME USAGE : kernel setup time : 198.850
kernel solve time : 1,15000
capacitance time : ,233333
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total user time : 200,233

ssssssosee enad of raport SRR IBES Aprls 83 02:03:17

The interactive session and output of running "cap3d” for the
traces in Fig. B.3 :

%

% cap3d.ex
e N number of traces atre = 2
A number of layers nlay = 2

want kernel matrix (’y’ or 'n’') ? 'n’
. want grids (' y or 'n’) 7 'n’
n trace no, 1
orientation (x=1.y-2) =1
subdivision (const=Q, Cheby=other) =1
x width and no. of div. : wx,nx = 5,40
y width and no. of div., : wy,ny = 2.d0
N z width and no. of div. : wz,nz = 0,40
!! position of center : c¢x,cy,cz = 3.1d0 3
’ trace no. 2 :
‘ . orientation (x=1,y=2) =1
PO subdivision (const=0, Cheby=other) = 1
: x width and no. of div. : wx,nx = §5.d0 3
y width and no. of div. : wy,ny = 3.40 3
t z width and no. of div. : wz,nz = 0.d0 0
% position of ceater : c¢x,cy,cz = 3.1d0 6.5d40 3.2d0
diel., const, of lower layer : eml = 4.d0
-~ diel. comst. of higher layer: en2 = 7.5d0
- interface position : h = 2.d0
relative error bound : errbnd (1.d4-3) = 1.4-3
— STOP in fort.9 statement executed

3
3
0
.d0 1.2d0

END of interactive session.

#8%%85% three—dimensional, 2-layer, 2-trace %**ssss Apnr15 83 (01:38:41

subdivisions : (x, y and z)
.73 3.54 .73 .29 1.41 .29

trace no., 1 with wx = 5,00 ax = 3 wy = 2,00 ay = 3
wz = ,00 nz = 0 center at : 3.100 3,000 1.200
orientation : 1 subdiv, method : 1

subdivisions : (x, y and z2)
.73 3.54 .73 .44 2.12 .44
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:ﬂ ': trace no, 2 with wx = §,00 nx = 3 wy = 3,00 oy = 3
& wz = ,00 pnz= 0 center at : 3.100 6.500 3.200
N orientation : 1  subdiv. method : 1
SN
SN 2-layer with brdy h = 2,00 rel errbnd = ,100e-02
- diel. const. enl(low) = 4,00 en2(top) = 7.50
jﬁz -~ total no. of subsections : 18 no. of kernmels : 171
S iterm = 6 no, of divgat : 0
areas :
.21 1.04 .21 1.04 5.00 1.04 .21 1.04 .21 .32

NN 1.55 .32 1.55 7.50 1.55 .32 1.55 .32

-t".: .-\}‘

SR . rcomd =  .53305083e—01 imfo = 0

- E; solution(even)

;_ 4.092 14.04 4.092 9.938 27.23 9.938
L 3.553 11.40 3.553 6.053 16.18 6.053
e 17.37 35.94 17.37 7.045 20.92 7.045
:ii no, of traces : 2 )

- : eap( 1, 1) = 87.83536715 cap( 2, 2) = 133.9861517

: D: cap( 1, 2) = 15,45701657

e

ﬂ§ - TIME USAGE : kermel setup time : 65.4833

S kernel solve time : ,183333
- capacitance time : .166667e—01

" RN total user time : 65.6833
e sesessssess  ond of report Sesesessse  Apr1S5 83 01:42:41

LS e

— B.3.4. Ezample 4

N The interactive session and the output for the trace in

B Fig. B.4 :

o = .
o - % cap2d.ex
A number of traces atrc = 1

o number of layers nlay = 3

want kernel matrix (’'y’ or 'n') 7 'y’

: . want grids ('y’ or 'a’') ? 'a’

® - trace no. 1 :
e horiz. width and no. of div. : wx,nx = 1,740 3
verti., width and no. of div., : wy,ay = 1.2d0 3
) h position of low left cormer: lolx,loly = 0.40 .5d0 J
Qf slant angle of the trace : ang (in deg) = 7.5d1 1

' ‘ {

3

.................




Figure B.4 A two-dimensional trace in three layers of media.
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division method (const=0 Cheby=other) = 1
diel. const. of lower layer : enl = 4.d0
diel. const. of higher layer: en2 = 7,540
interface positions : a,b (a¢b) = 0.5d0 2.5d0
relative error bound : errbnd (1.d-3) = 1.d-2
STOP in tort.7 statement executed

END of 1nterac£ivo session,

*s3ss8% two-dimensionsl, 3-layer, l-trace ®ssesss Appr15 83 00:02:56
l with wx = 1,70 ox = 3

.00 .50

trace no,

position :

subsections :
182 .878

wy = 1,20
slant acgle (deg)
.747 .155

ny = 3
75.00
.249 1.202

.155 .249

.182

3-lsyer with bdry heights a = .50 b =
diel const enl(low) = 4,00
relative errbad = ,100e-01

2.50

en2(top) = 7.50

total no. of subsections : ;2
iterm = 12

. mo, of kernels : 78
no. of divgat : 0

widths :
.25 1.20
.88 .18

.25 .15 .75 .15 .18 .88 .18 .18

.84743¢-01
+18020e-01
«15007¢-01
«27945¢-01
«19381¢-01
.81513¢-02
«19202¢-01
.20815¢-01
.11525¢-01
.88393e-01
+35820e-01
+10561e-01
+10605¢-01

rcond =

2.958
3 0017

------------------

............................

.20391e-01
.16603e-01
47521601
.47521e~01
«15633e-01
.35820e~-01
.16595e¢-01
4091 4e-01
.15633e-01
.81513e—-02
.77381e-02
.165956-01
«16755e-01

.61052279¢-01
solution(even)

11.40
5.438

no, of traces :
cap( 1, 1) =

packed symm matrix ker :

.40871e-01
«11365¢-01
.65681e-01
<99889e~01
«11525e-01
+26691e~01
«10561e-01
<95082e-01
.19381e-01
.18603e-01
«12357e-01
«19202¢-01
«223120-01

2.958
1.200

40.64073429

info

.......

.37890e-02
.99889e-01
«11365e-01
.62266e~01
.88393e-01
.18518e-01
.70566e-01
+37810e-02
«33764e-02
«30659e-01
+16755e-01
«25121e-01
.208156-01

- 0

.9070
3.017

«20391e~01
«15007¢-01
«16603e—01
«17036e~-01
.30659e~01
«35191e-01
«39781e-01
.170360-01
+77381e-02
.18518e-01
+35191¢~01
.40466e-01
.40914e-01

2.174
5.430

.....

+84743¢-01
.17498e-01
«18020e-01
+37810e-02
.18603e-01
+55031e-01
«24433e-01
.62266e-01
.10605¢-01
«26691e~01
+55031e-01
.68090e-01
.95082¢-01

.9881
1.156

-------------
.....

« S et
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TIME USAGE : kernel setup time : 970.250
kernel solve time : .133333
capacitance time : ,000000e+00
total user time : 970.383
bl dd gl L end of report bbb b AL LT 1 Aprls 83 00:28:16 -
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[ | APPENDIX C

o

;3 _:5 COMPUTATION OF TWO-DIMENSIONAL KERNEL MATRIX ELEMENTS
,. o )
: "' K €C.1. Introduction

fi o , In reference to Eq. (2.14) the kernel matrix element Aij is a

_;: ~ double integral containing the Greenm'’s function, the basis function

u ’ and the testing function. In order to have a closed form for the

ié B evaluation of these elements, the basis functions are chosen as

%5 i; pulse—type functions, and the testing functions are the same as the ?
{g ii basis functions for Galerkin’s method. Two types of interconnect é
T i side walls are considered in the two-dimensional case, i.e., vertical 5
EA o and slant side walls. Of course, the vertical case can be considered ?
Ny 1 as a special case of the slant side wall with s pitch of 90°. For i
;; ¥% the sske of comparison, both cases are considered. Additionally, let ¥
:; us define a special convention to simplify the expressioms of those E
i' ) closed forms. 1
. 2 [f(x.y)]x-::: :: = f(a,,y) - f(a,,y) + fla,,y) - fla,,y) (C.1)

- )

N

! B as Ba

: [f(x.y)]x““ jup, = Tl020B2) = £la2,B0) = flax,pa)

- + f(a,,p,) (C.2)

.' p

|

where f(x,y) can be any real-valued functiom, and a,, a;, a;, as, B1,

b B; are real constants.
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C.2. Vertical Side Wall
:Ei For the two—dimensional and vertical side wall case, the basis
?"3' functions which divide the perimeter of the cross-section of an .
:{IE interconnect into subdivisions can generally be categorized into two
Q;i groups : horizontal pulses and vertical pulses. They are defined as
.-.'_ . - < +' = v°
itﬁ P?(x.y) - [ 1/SJ, for xj L x £ x5, 5 =7;

;ﬁﬂ 0, otherwise (C.3) )
.:‘:-:', = +_ .- hd *
1:3-

j‘:‘j >y + z = x..

o Pi(x.y) = | /85, tor yj $ ¥ Lyj ]

o 0, otherwise (C.4)
{ S, = (yt-y0)° :
e and 8, = (y;773)

N Since the “cores” of the two—~dimensional Green’s functions in

N Eqs. (2.15,2.16,2.21,2.22) are logarithmic, the following integrals o
:&t result from incorporating the pulses in Eq. (C.3) and Eq. (C.4).

o

;j; Assume that x} 2 15, x} 2 z7, y} 2 53, ¥i 2 yi and A, K are real con-

e stants which can also be zeros; moreover, x; is the abscissa of the

j;j vertical pulse PI, and y} is the ordinate of the horizontal pulse P?.

e + .t -
L X j X1 3 3 -
Q! (1) Ixx = J.x_dx Ix-dx' la((x-x') + A] ‘
:"‘.' i i .
N

~

-.--‘ -
!! ¢ Normalizing the pulse amplitude with the pulse width or area, )
fante S;, is essentially the same as using the charge Q as the "state vari-
*:2 able” as described in [10]. The advantage is a numerically more

.. stable kernel matrix.

LS

4+

o
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+
I = IYde Iytdy' 1n[A? + (y+y'+D) 7]
()1, = j”{ay jﬁaw 1afA* + (y-y'+D)’]
(4) I YI yi_, 2 , 3
y3 = | 4y [Tay' 1nla + (y-y' 14007
( 83. YI 0,3 [) 3
I .j dx_[ dy’ 1al(x-2})? + (y3+y'+B)’]
X YI 0.3 0 2
(6) I, = [Yax [Tlay' 1al(x-z)® + (5}-7'+0) ")
x] 1
(M 1y = [Yax [Tlay 1altamx? + I35y 140)°]

Because of the similarity of the above integrals, the closed-

form expressions for them can be given in terms of the following

functions :

Flx,y) = 2—(z"-y)1a(z’+y") - 2 1%+ 2xytan 1-E- (c.5)
H(x,y) = xyln(xz+y’) - 4xy + 2y’tan-1-§- (C.6).
p -1 _a
G(a,B,2) = j xtan “——dz, Ba
a

0.5[(l’+x’)tan-1-§- +ax] B. B>a0 or 02B>a
- x=a (c.7)

0.5[(a:+x’)tan-1-i- +ax] g -§—|‘Sign(l), a<0<p
x=q
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. where sign(a) =
- lal
:::\
ok
S Note that F(x,y) is an even function in botk variables x,y, while
: H(x,y) 1is an odd function on both variables. The special considera-
“J e
5\'
:;~ tion given to G(a,B,2) as described above is due to the singularity
T or branch cut at z=0.
After some algebraic manipulation, the integrals, Ixx' Iyyl'
Cé etc., can be expressed in terms of Eqs. (C.5,C.6,C.7) as follows :
(1 1 =-[Fa] xj~x i ;
x-xJ-xi. xJ-xI .
t+yt+K, yT+yi+k
| @ 1_, =[F.n] 7 1 i
::,- ’r"lrj 4'5’,_*'l{n j’j *'j’j.*'l:
:: t-yt+K, yi-yi+k
- 3 I_,=-[Fe.n v E 30, -
' YK, Y5yitK -
: oot -
- t-yt1+K, ly7-y71+K
o (i) - [Fy.0 ] 'yi i i
Y‘|Yj‘yil+xn IYj'Yil'“‘x
Y12y32373i2y7 or yi2yidy)2y;
i Ii*k. ¥i-v3K
(i) [Fa] 7377 T 70T gty
2 it FALTIR £ 454
e, 3 a2 -1
- (K1a(K'+A")-2K+24tan 100y | vy 25y

(4) Iyy3 = (iii) interchange y}(-)y}. yg(-)y;

in the above expression, if y}2Y€ZYEZY3

@SNIINNS @

-3
.
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~-y7+K, yi~y7+K
(iv) [F(y,A)] yJ ! o

- 2(yt-vy) -
y=yi-v3+K, ¥i-y}+K J

(Ria(K A ) -2k+2atan 1Ky | ytyytyyTyys

(v) interchange y}(-)y}. y}(-)y}

in the above expression, if y})y;)y3>y;

+_x +yf+K
(9 I, =[(Bx»1 M7+ 26032y, 15230 ] T
4 x-z}-xi y-yJ+ <+K
+—x% t+K
x;i~%; e A
) I, =~ [tBzp1 M h 4 26t3-2). 51ty ]y_yJ
x"xj—xx yJ-yl+K
4.0
b 3wt 1
sign(y}-y})[[ﬂ(x.y)] i :
x=x_-x.
J 7 |
+
-yil+K
+ ZG(x?-x..xT-x?.y)] 'yJ
j i %i %
y=lyj-yil+x
o, + o, -
(1 I.43= vj2¥i o ¥7j4¥;
+ 0 o
b & '_Y K y -Y'+K
[[H(x.y)] J 0+ 26(x% -x1 xj-x ;.y)] 73 t o
x-xj-xi = K, K v
]
+ - L
Yi)Yj>7i )
3
3
€.3. Slant Side Wall ;
If the pitch angles of the side walls of the intercommects are 1
1
taken into account, assuming that the interconnects are left and ;
right symmetric, the pulse—type basis functions, be they on the hor— ]
X
N
izontal planes or on the slant side walls, generally can be expressed .
:
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parametrically with the help of polar coordinates as

. .+ ., .+tsinn., ]
1/AJ. for x=x tcosnJ y=Y; tsxnnJ 0t AJ

Pi(z.y) = |
0, otherwise (c.?

Note that (xj.yj) is the coordinate of one of the end points of the
subdivision, and “j is the polar angle of the subdivision. This
angle should be limited within 0  and 360°. Aj is the width of this
subdivision, and as in the previous case, it is used to normalize the
pulse amplitude. For horizomtal subdivisions, the angle nj = o° or

1800. Hence, all the subdivisions on the two—dimensional cross-—

section of an intercomnect can be represented by Eq. (C.7).

As in the previous section, after incorporating the "cores” of
the two—-dimensional Green’s functioms with the pulse in Eq. (C.7),
the following integrals are needed for the evaluation of the kernel -

matrix elements.

j i
(1) I, = IAJdt jA dt’ ln[(xj+tcosnj-xi-t'cosni)z
0 0
3
+ (yj+tsxnnj-yi-t sinn, +k,) 1

(2) I, = IAJdt jAldt' ln[(xj+tcosnj-xi-t'cosni)’
0 0

3
+ (yj+tsinnj+yi+t'sinni+k.) ]

g j i
¢ (3) I, = IAJdt jA dt’ ln[(xj+tcosnj-xi-t'cosni):
i 0 0

. . 2 -
+ (|Yj+tsxnnj-yi—t'sxnni|+k°) ] f;

R NS AN AP AP IERFAS I SN A A;_"ﬁi
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where k, is a real constant, and Aj' A; are the lengths of the jth

and the ith subdivisions in guestion.
In order to encompass the evaluation of all three of the above
integrals, let us first consider a more general integral, assuming a,

a8, b and k, are all real constants.

Aj at+bt 2
I= j dt I dt’ In[(x . +tcosn.-x.-t'cosn,)
0 a J J 1 1

3
+ (7j+t31nnj-yi-t'sxnni+ko) ]

A ; a+bt-ka
= f Jat f dt’ 1a(t’’+x}) (C.8a)

0 a-k,

where k, = ast + v,

k, = act + v, (C.8b) H

sad a, = - sin(nj-ni) a, = cos(nj-ni)
Yy = (xj—xi)sinni - (yj-yi+k°)cosni

Y, = (xj-xi)cosni + (yj—yi-*k,)sinni (C.8¢c)

Furthermors, two more functions are defined to represent the integral

in Eq. (C.8a). They are :

-1 (b-a,) t+(a=731)
astﬂx (C.9a)

F;(A-,l,b) = IAJdt (a t+11)tln
i o s

[ R U Wy ey e
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Fz(Aj,g,b) = IAJdt [(b—act+(a-7;)] ln{[(b—ac)t+(n-7;)]3+(¢3t+7;)’}
0

(C.9b)

Finally, the integral I inm Eq. (C.8a) can be writcem in terms of the

above F, and F; as

I= 2F,(Aj...b) + F,(Aj,a,b) - 2F,(Aj,a,0) - F,(Aj,a.O)

-2- . - a. .
(a a)AJ bAJ (C.10)

After some lengthy derivation, the integrals in Eq. (C.9) can be

expressed in closed forms as :

-1 (b-ac)Aj+(a-1;)

a
(i) (-Ei—A; + Y;Aj)tan

, if =0
asAjﬂl 1 Ts¢
) a; 3 . -1 (b-ﬂc)éi'*‘(l‘?z) agYse
Falbgrand) = (D (ot * v e = o - Ty
2 3
Te Y4, +271Aj+7!
- -—x(b-a ) In (C.11a)
271 Y’
. 1 0 L 81 . YcTa(b-uc) 1.
71 2 Yq
-1 YstYid, -1 Vs
(tan™ 12T 1 _ ¢,p72 ), if vy, £ 0
7; Te
(i) (3-7,)Aj Inly,l, if y, =0 (C.11b)
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A (b-a,)
-a
) Fi(a;,a,8) = (id) [—3—(b-a)+(a-y2)A;] laly,] + —5—
3
YN O 3. Y ahjtre/ s
[(x + =) la(x + —7)-x + {(a-v,)
ta Yq LE] x=y,/vq
p Te XY +rs/Y
- 7 i 8 7
- (b-ac)][xln(x3+ 7; )=2x+2 tan l——_T
1 Ty Y1 Ye =Y, /v,
r4
where v, = (b‘“c)Yx - (a-v3)ag

3 +.(b V3
Yy = Gs ac.

Yy = (b-a.) (a=73) + agy,
3 3
Ty = 71 + (a=7,) (C.11c)
I g
Finally, the integrals described at the beginning of this sec- i
tion, I,. I,, I,, can be expressed in terms of the more general i
B integral I which in turn is an algebraic combination of closed forms
F, and F;. Assume that I is a tunction of its variables and can be g
x
- written as ]
. .1
.. '1
- I= I(Aj,a,"bpxj'yipnipijinnjlko) ‘:i
-$ '
: b
Then I,, I, can be written in terms of I as follows, -]
‘-1

ST e et i
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(1) Il = I(Aj.O.Ai.O,xi.yi.ﬂi.xj.yj,ﬂj;kg)

(2) I, = 1(4;,0,8,.0,x;,-y;,=n;,x,,7,.0;,k)

377377

Assuming sinnj 2 0 and sinni 2 0, I, is expressed as

(1) 75 2 y; + Agsiang

I, = I(AijpAipo'Xi1Yi;ni)xjpyJ')nj)ko)

(ii) . + A.sinn.
y; 2 Y; AJsxnnJ

I; - I(AjnonAiao:xiayiﬁni»xj:Yj:ﬂjp-ko)

(iii) yi+aisinng > yj+A.sin1|j and Y; 2 ¥; and sinn #0

J
Y-y sinn
I, = I(a,,0,——4 1 x.,y,
3 3 sian, ! sian, S ATL LI R ATA IR YD
¥Y:-Y: sinn.
- I(A, A, i al . -
j*tir 3inﬂi sinni uxinyxnni-xanjoﬂj- ky)

(iv) Yi+A sinn, ) yj+Ajsinnj and Y; 2 ¥; and sinn, = 0

> ¥

I, = I(Aj’o'Ai'o'xi'yi'“i'xJ j

nﬂjnko)

(v) yj+Ajsinnj 2 yy*A sinngand y, y; and sian; £0

Yi“Yj
sinn.
nJ

sinni

I' = I(Ai'O, ,xi'Yi'“i,x-,y-,nJ‘l-ko)

' sinom. i’
;

Ti"¥i sinni
sinn,
j

- I(Aiijn .xi.yi.ni.x-.y-.ﬂj.ko)

sinn, J 7]
nJ

Lt Bve st S Sasy g inde Sl Reg

Yo

____________
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(i .+A.sinn. . , inn. =
vi) YJ+AJ31nnJ 2 y;*A;sinnjand y; 2 Y and sinn; 0

\_.
LS
e
:5::.‘ A‘ I‘ = I(Ai.O.AjpOpxi|Yio“ipr~.y.ionj)ko)
o
. e
. o (vii) yi*a sinn; O yj+Ajsinnj >y Y; and sinn; # 0 and sian; *0
i yi~y;+A sinn; yi~¥; simn;
I, =1 Y Mia T s T an
' ( sion, ’ sion, ’ sion S AT L AT IR
SONEN Yi7Y; sinn; i<y sinn;
BN o - I +A . Ll i y-1 d » . 2 nx'DY':ﬂ"x'pY':ﬂ'pko)
W sion, J sinn J° sinn sinn, 1791771773093
AN i i J J
A sinn Yi=¥;
A + I(A,,0,A,~-A —— _ Jj 71 oYM oK sV eaT sy
,\_.‘ 51: J i7" sinni Sin'ﬂi »0.81.Y1 ni XJ YJ.TIJ. ko)
E:j (viii) yj+Aj’in“j > yy*A sinng ¥; > y; and sinn; # 0 and sinnj O
- - V=¥, sinn B 4 sinn
- IR I = i(=E—dp ——% o, =L 1 ;v nxLynake)
b sinnj sxnnj sian, sinn, LR M S R M |
: s sinn, y;~¥;  siom,
- I( . . +A' 2 IA'D j » d »X:5¥:oMs;» 2 I 'u-k
siny 1 ginny 1° sinq sinn, 1 VisMye X503 5005 o)
j J i i
siaq ¥i~Y;
3 + I(A .- i _ _Ji°7j U0 DUE SO
NS e et e R R TUTLY
A J J )
‘%: % With the help of the above closed—form expressions, the evaluation of
S
RO the kernel matrix elements easily can be obtained.

.l‘ * ‘
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APPENDIX D

EVALUATION OF THREE-DIMENSIONAL KERNEL MATRIX ELEMENTS

D.1. Introduction

Following the same strategy outlined in Appendix C for the two-
dimensional case and employing the same convention in Eq. (C.1,2), we
can evaluate the three—dimensional kernel matrix elements in closed
form as Dbefore, However, ouly the vertical side wall case is con—

sidered here,

D.2. Formulation

As before, in reference to Eq. (2.14), the pulse type basis

functions on the surface of the interconnects are chosen as

3 M g ?n = '

P;(x.y.z) - [ 1/Sj. for x5 $ x { x3, ¥5 Ly S y5r 2= 2
0, otherwise (D.1s)

- . - + Lo

P;(!.y,l) - [ llsj’ for yj S y S an Zj s z S zJ' z xJ

0, otherwise (D.1d)

I/Sjo for ZJ‘

i~

+
lSljo xj

|
i~

+
X X:o» ¥ =Y,
P?(x.y.z) = [ $ % J

0, otherwise (D.1¢c)
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(Y E? where Sj is the area of the subdivision, e.g., S; = (x}‘xg)(YE‘Y}) in .
;és .. Eq. (D.1la). Similarly Sj can be obtained for Eq. (D.1b) and
3 SR Eq. (D.1¢). The reason for using Sj as the normalization factor of
,‘}{ gf the pulse amplitude is to have a more stable kernel matrix as dis—
;;2 . cussed in Appendix C, Note that in Eq. (D.la) x}, x}, y}. y}, are
E:i i;; the bounds of the jth rectangular subdivision, and z; is the ordinate

of this "square” on the z—axis. The pulses described im Eq. (D.1)
are on the planes parallel to the xy, yz, zx planes, respectively, as

the superscripts indicate.

Since the "cores” of the three-dimensional Green’s functions in

T Eqs. (2.23,2.24,2.29) are of the form

£O [(x=x)  +(y=3") "#(222’ +k,) 17 )

5?3 h some of the typical integrals that resanlt from incorporating them
< L

o ?g with the pulses in Eq. (D.1) are listed in the followirg :

Rl + gt £ ot

R i i -
. @ 1, = (o [Par [Tay [Tlay (e smy) el 17
e T o I SR £ i

e + t + +

T - X z Zi -
RO @ 1, = [Jax [Caxr [T [ ar (amx) 050y savarergy 1Y
Tl 5T T
N + .t Lt

AR Z1 y Z1 -
S (3) I, = jxidx I dx’ j de I dz' [(x-x')z+(Y‘Y;)3+(23‘Z'*ko)z] e
Nt xj i ¥ Zi

o -t
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.1 + Lt
49 I, = Iz}dz [ ez ijax [ ezt Lx=s)  +(55p) Pe(amat4rg) 17
z} zy x} z3

where k, is a real constant which can also be zero.

Next two closed-form functions are defined such that those
integrals presented above can be expressed in terms of them. They

are

3
P(a.p,2) = - _%_(az+ﬂz+§:)s/z + iz_(a3+ﬁz+§z)x/z

we

+ (asinh~1 b + Bsinh-l : )
2 (a*+e?)/? (it /?
3 o
5 (B 'nh-l b + inh-l : ) R
- ct— si as
2 (a3+§3)1/3 (BI+§3)1/I “
Zaptan~! e B
- Q) an
gat+piee®t? (D.2)
af 3
(a,B, ) = —(a +p°+¢")"/? - gapsinh ™l
3 (a’+p) "/
N a
- 0.50B(8"- ——) sinh .
3 (8 +2) X
3
a B
+a(2*- ——)sian~1 ] -
3 (a‘+§’)x/z

N -'."--'- . “q"-.'.'-
PP AN PR R PLY A,




t? + 0.5¢[ p’tan”? - o + a tan” 8 ]

ﬂ(a +B3+¢3)1/3 a(a3+B3+:3)1/3

+ : ¢’ tan~? 2
—¢ tan
c\.‘ 6 §(¢’+p'+g’)1/1 (D.3)

- It should be pointed out that P(a,f,%) is an even function on all
three varisbles, while Q(a,B,%) is an even fuction on the last vari-

able £ and an odd function on the first two variables a and B.

Finally, adopting the conveation imn Egs. (C.1,C.2), we can

express the aforementioned integrals as follows :

‘gt -
xj-xi x3-33

+ gt ——T
j ¥i©y:i ¥j Y3

1
+

(1) I, = [Pa,B.2}~2}+k0) ] -
a-x Xip Xj xip Bzyj-yib yj—Yi

) -z x3-zx3 zt+zi+k, z7t2tk,
.';.‘ (2) I, = [-P(a.B yJ Yi)] i i . J J
\ a-xj-xi, x; e 3 B=z +zi+k,, zJ+z +k
- °o__+ oot -~
- i z.—z.+k° x.-xi X =2
(3) 1, = [-ata.p, z:)] 7 i L
N a'YJ'yi. B‘zj-zi+k,, §-x1—x1. xj-xz
xt-x° o__+ +o..+ -
- i 41 z5+25+k,  z+z 4k,
.‘.'_ (4) I‘ = [Q(G)Bng)] i i J ] ' J *

o - - -
a=xj-x3, B=yj-yy, i=zjrzi*k,, 2j*zi+k,

Ol
PR AT
.".'.‘.'.'-'~'

% 4, g te
NI
sty .

There are some other possible integrals when incorporating the

i,?; three—dimensional Green’'s functions with the pulses inm Eq. (D.1), but

ﬁii; they are sll similar to those just presented, Furthermore, they are

'§Zi L all expressible in terms of the two closed-form fuanctions P and Q.
sk

j%% . Therefore, the kernel matrix elements can all be evaluated by the

;ng | closed-form expressions described above.

e

5

A
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SPICE INPUT DECK FOR FULL ADDER I

Shown in the following is the SPICE input deck for

"Full Adder

Circuit I" with all the interconnect paramters.

full adder circuit I (with cap)

£000 15 16 3.6e+01 .
001 16 15 2.0e+01 o
£002 15 16 5.0e+01 —
£003 17 18 5.0e+01
r004 17 19 8.6e+01
£005 18 17 7.0e+01
£006 17 18 1.0e+01
c000 500 O 0.0158pf
007 21 500 1.5e+01
£r007 500 22 1.5e+01
c001 501 O 0.0158pf
r008 21 501 1.5e+01
rr008 501 23 1.5e+01
c002 502 O 0.0158pf
r009 21 502 1.5e+01 =
rr009 502 24 1.5e+01
¢003 503 0 0.0158pf
r010 21 503 1.5¢+01
£r010 503 25 1.5e+01
c004 504 0 0.0126pf
r011 26 504 1.5¢+01 -
rr011l 504 27 1.5e+01 R
c00S 505 0 0.0126pf R
£012 26 505 1.5e¢+01 SN
£r012 505 28 1.5e+01 T
c006 506 0 0.0112pf -4
r013 26 506 2.1e-01 N
013 506 29 2.1e-01 2
c007 507 0 0.0014pf 3
014 29 507 1.5e+01 &
rr0l14 507 30 1.5e+401 -
c008 508 O 0.0126pf o
r015 31 508 1.5¢+01 X
rr0lS 508 32 1.5e+01 o
c009 509 O 0.0144pf AN
r016 31 509 5.4e+01 R

1
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rr016 509 33  5.4e+01

€010 510 0 0.0126pf

r017 31 510 1.5e¢+01

rr017 510 34 1.5e+01

c011 511 0 0.0116pf

r018 35 511  3.0e+02

rr018 511 18  3.0e+02

c012 512 0 0.0084pf

019 36 512 2.7e+01

£r019 512 16 2.7e+01

c013 513 0 0.0087pf

r020 36 513 8.2¢+01

rr020 513 37 8.2e+01

c0l4 504 508 0.0177pf

c015 504 509 0.0211pf

c016 504 510 0.0177pf

c017 505 508 0.0178pf

c018 505 509 0.0211pf

c019 505 510 0.0177pf

c020 506 508 0.0177pf

c021 506 509 0.0211pf

c022 506 510 0.0177pf

c023 507 510 0.0001pf

c024 504 500 0.0210pf

c025 504 501 0.0209pf

c026 504 502 0.0209pf

c027 504 503 0.0209pf

c022 505 500 0.0209pf

€029 505 501 0.0209pf

c030 505 502 0.0209pf

c031 505 503 0.0210pf

c032 506 500 0.0209pf -

c033 506 501 0.0209pf .

c034 S06 502 0.0209pf

c035 506 503 0.0209pf

c036 507 502 0.0001pf

c037 508 513  0.0034pf

c038 509 513  0.0036pf

c039 510 513  0.003:ipf

m14000 5 16 16 0 1load 1= 12.00um wv= 2.17um )

214001 5 10 10 0 load 1= 8.00um v= 2.25um !

m1d002 5 18 18 0 1load 1= 17.00um w= 2. 24um 1

m1d003 5 11 11 0 1load 1= 10,00unm w=  2,20um )

mot000 6 25 0 0 drive 1= 2,00um w= §.00um ;

mot001 7 30 0 0 drive 1= 2.00um w= 8.00um

mot002 8 23 0 0 drive 1= 2.00um w=  8.00um i

mot003 9 24 0 0 drive 1= 2.00um w= 8. 00um 1

Bot004 16 30 9 0 drive 1= 2.00um w= 8.00um 3

mot005 16 34 8 0 drive 1= 2,00um w= 8,00um ‘

mot006 15 34 7 0 drive 1= 2,00um w=  8.00um

mot007 10 16 0 0 drive 1= 2,00um w=  8.00um b
[
q
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> mot008 11 35 0 0 drive 1= 2.00um w= 8.00um
e mot009 12 27 0 0 drive 1= 2,00um w=  8,00um
o~ mot010 18 32 20 0 drive 1= 2.00um w= 6.00um
R mot011 17 37 12 0 drive 1= 2.00um w=  8,00um
ﬁj{ mot012 18 37 14 0 drive 1= 2.00um w= §8,00um
) mot013 20 28 6 0 drive i1= 2.00um w= 6,00um N
A mot014 13 33 0 0 drive 1= 2,00um w= §8.00um
mot01S5 19 37 13 0 drive 1= 2,00um w= 8.,00um
mot016 14 22 0 0 drive 1= 2,.00um w= 8.,00um
®]load capacitances
* sum
c¢ll 11 0 .lpf
A:- L carry
. cl2 10 0 .1pf
.model 10ad amos vto=-2, 7o=600 level=1 lambda=0.02 tox=l.,e-7
.model pass amos vto=l. uo0=600 level=1 lambda=0.02 tox=l,e-7
.model drive nmos vto=1l, uo=600 level=1 lambda=0,02 tox=1.e~7 wn
- *inputs
v3 32 0 pulse(0 5 120n 0.1n 0.1a 120n 240m)
Aty v2Z 28 0 pulse(0 5 60n 0.1n 0.1n 60n 120mn)
o vl 25 0 pulse(0 5 30n 0.1z 0.1n 30n 60n)
o vdd 50 5
.options lvltim=1 itl4=20
.tran 3n 240n
L .print tran v(25) v(28) v(32) v(11) v(10)
o .eund
[ Note that the capacitors numbered from "c014” to "c039” are coupling -
e capacitances. They are "c.mmented out” in the case of only consider—
ing the self-capacitances. For the case of no intercomnect parame-
ters, another extraction is done with large parameters "RLIMIT” and
e "CLIMIT" specified im "comstant.h”.
MRS
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3 f? APPENDIX F

;Lﬁ SPICE INPUT DECK FOR FULL ADDER II
B .-

R

The input SPICE deck for "Full Adder Circuit II” is given in the

following.

full adder circuit II (with capacitance)

) 000 10 7 3.5¢+01
. r002 12 13 6.9¢+01
& r003 12 14 1.0e+01
c000 500 0 0.0114pf
r004 14 500 5.1e+00
rr004 500 15 5.1e+00
c001 501 O 0.0109pf
: 005 14 501 5.1e+00
[3 rr005 501 16 5.1e+00
c002 502 0 0.0114pf
r006 17 502 4.9e¢+01
rr006 502 18 4,9e+01
c003 503 0 0.0335pf
. £007 17 503  5.4e+01
_ e rr007 503 19 5.4e+01
L ) c004 504 0 0.0114pf
R 008 17 504 8.3e-02
o rr008 504 20 8.6e-02
el 009 20 21 1.0e+01
- - c005 505 O 0.0316pf
e = 010 22 505 5.2e+00
o ' rr0l10 505 8 5.20+00
S r011 23 24  5.0e+01
N r012 23 25 1.1e+02
b r013 23 26 1.0e+02
e £014 27 28 3.0e+01
R £015 29 28 5.5e+01
o r016 30 31  2.5e+01
S c006 506 O 0.0427pf
T £017 32 506 2.0e+02
e rr017 506 33 2.0e+02
> Y | c007 507 0 0.0339pf
L r018 34 507 3.5e+02
LN rr018 507 6  3.5e+02
I, c008 508 0 0.0043pf
o £019 35 508 4.5e¢+01
'

-. )
—‘ *
..




rr019
c009
r020
rr020
c010
r021
rr021
c011
r022
rr022
c012
r023
rr023
¢013
024
rr024
c014
£025§
£r025
c015
r026
rr026
c016
r027
rr027
c017
r028
rr028
c018
r029
rr029
c019
r030
rx030
¢020
c021
022
c023
c024
c025
c026
c027
c028
c029
¢030
c031
c032
¢033
c034
c035
c036

508 31
509 0
36 509
509 37
510 0
36 510
510 38
511 0
36 511
511 39
512 0
40 512
512 41
513 o0
40 513
513 42
514 0
40 514
514 25
515 0
43 515§
515 44
516 O
45 516
516 46
517 0
42 517
517 47
518 0
44 518
518 28
519 0
37 519
519 17
505 503
505 506
505 507
505 512
505 513
505 514
503 506
503 507
502 511
502 513
503 513
504 513
516 507
506 507
510 518
511 517
517 515

--------

Bl Bes B

-

-

et
al A

4.5e+01
0.0144pf
1.5e¢+01
1.5e¢+01
0.0193pf
1.5e¢+01
1.5e+01
0.0370pf
3.20+02
3.2e¢+02
0.0065pf
6.8e+01
6.8e+01
0.0289pf
3.0e+02
3.0e+02
0.0101pf
1.1e+02
1.1e+02
0.0296pf
3.1e+02
3.1e+02
0.0279pf
9.0e+01
9.0e+01
0.0179pf
3.0e+01
3.0e+01
0.0173pf
1.8e+02
1.8¢+02
0.0065pf
6.8e+01
6.30+01

0.0011pf
0.0222pf
0.0222pf
0.0229pf
0.0229pf
0.0265pf
0.0285pf
0.0285pf
0.0030pf
0.0059p¢
0.0314pf
0.0030pf
0.0120pf
0.0096pf
0.0175pf
0.0052pf
0.0052pf
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¢037 500 515 0.0030pf
c038 501 515 0.0030pf

m1d000 5 31 31 0 load = 14,00um w= 5,71um
mld001 5 6 6 0 load 1= 14,00um w= 5,71lum
m1d002 5 8 8 0 load 1= 14,00um w= 5.71lum
m1d003 5 7 7 O load 1= 14,00um w= 5.71lum
m1d004 5 25 25 0O load 1= 14,00un w= 5.71lum
m1d005 5 28 28 0 load 1= 12.00um w=  6.00um
mot000 6 32 0 0 drive 1= 4.00um w= 8,00um
mot001 10 34 0 0 drive 1= 4.00um w= 8.00um
mot002 7 35 0 0 drive 1= 4.00um w= 8.00um
mot003 8 19 0 0 drive 1= 4.00um w=  8,00um
mot004 21 39 16 O pass 1= 4,00um w= 4_,00um
mot005 15 41 21 O pass 1= 4.00um w= 4.00um
mot006 13 43 22 0 pass 1= 4,00um w= 4.00um
mot007 26 45 0 0 drive 1= 4,00um w= 8,.00um
mot008 24 33 o o0 drive 1= 4,00unm w= 8.,00um
mot009 27 42 0 0 drive = 4,00um w= 12,00um
mot010 5 38 9 0 pass 1= 4,00um w= 4.,00unm
mot011 18 44 9 O drive 1= 4.00um w= 4.00um
mot012 9 47 0 O drive 1= 4.00unm w=  4,00um
mot013 29 37 0 0 drive 1= 4.00um w= 8.00um
mot014 30 46 0 0 drive 1= 4.00unm w= 8.00unm
*load capacitances

* carxy

cll 950 .1pf

¢ sum

cl2 14 0 .1pf

* model cards

.model 10ad nmos vto=-3, uwo=600 level=1 lambda=0.02 tox=1l.,e-7
.model pass nmos vto=1l. uo=600 level=1 lambda=0.02 tox=1l.,e-7
.model drive nmos vto=1l., uo=600 level=1 lambda=0.02 tox=1l.,e-7
*inputs

v3 19 0 pulse(0 5 120n 0.1n 0.in 120n 240n)

v2Z 46 0 pulse(V 5 60n 0.1n 0.1n 60n 120mn)

vl 32 0 pulse(0 5 30n 0.1n O.1n 30n 60m)

vdd 50 5

.tran 3n 240n

.print tran v(32) v(46) v(19) v(14) v(9)

.end

Note that the capacitances from c020 to c038 are coupling capa-
citances, Some of the interconnect parameters consist of resistances
only, e.g., r011 to 1016, because the capacitances of diffusicn

interconnect lines are mneglected in the consideration. Other .

siderations are the same as in the previous case,

" A J,"_ -------
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